- Title
- Assessing sediment particle-size effects on benthic algal colonisation and total carbohydrate production
- Creator
- Dalu, Tatenda, Cuthbert, Ross N, Chavalala, Tiyisani L, Froneman, P William, Wasserman, Ryan J
- Subject
- To be catalogued
- Date
- 2020
- Type
- text
- Type
- article
- Identifier
- http://hdl.handle.net/10962/466815
- Identifier
- vital:76789
- Identifier
- https://doi.org/10.1016/j.scitotenv.2019.136348
- Description
- Increased sedimentation and siltation associated with anthropogenic environmental change may alter microbial biofilms and the carbohydrates they produce, with potential bottom-up effects in these ecosystems. The present study aimed to examine to what extent carbohydrate (associated with biofilm exopolymer) concentration and benthic algal biomass vary among different sediment types (size-structure categories) using a microcosm experiment conducted over a period of 28 days. Substrate treatment and time had a significant effect on the total chlorophyll-a concentrations, whilst a significant interaction was present in the case of total sediment carbohydrates. Total sediment carbohydrates did not relate significantly to chlorophyll-a concentrations overall, nor for any substrate treatments owing to a non-significant ‘chlorophyll-a × substrate’ interaction term. The diatom community characteristics across sediment sizes were unique for each treatment in our study, with unique dominant diatom taxa compositions within each sediment size class. The finest sediment particle-size (greater than 63 μm) may be the least stable, most likely due to lower binding. We anticipate that the current study findings will lead to a better understanding of how different sediment types due to sedimentation and siltation will impact on primary productivity and the composition of diatom communities in aquatic systems.
- Format
- 6 pages, pdf
- Language
- English
- Relation
- Science of the Total Environment, Dalu, T., Cuthbert, R.N., Chavalala, T.L., Froneman, P.W. and Wasserman, R.J., 2020. Assessing sediment particle-size effects on benthic algal colonisation and total carbohydrate production. Science of the Total Environment, 710, p.136348, Science of the Total Environment volume 710 number 1 1 6 2020 1879-1026
- Rights
- Publisher
- Rights
- Use of this resource is governed by the terms and conditions of the Elsevier Terms and Conditions Statement (https://www.elsevier.com/legal/elsevier-website-terms-and-conditions)
- Hits: 25
- Visitors: 25
- Downloads: 0
Thumbnail | File | Description | Size | Format | |||
---|---|---|---|---|---|---|---|
View Details | SOURCE1 | Assessing sediment particle-size effects on benthic algal colonisation and total carbohydrate production.pdf | 643 KB | Adobe Acrobat PDF | View Details |