Biology, ecology and management of the Keurboom moth, Leto venus Cramer and the leafhopper Molopopterus sp. Jacobi in cultivated Honeybush (Cyclopia spp.)
- Authors: Mushore, Tapiwa Gift
- Date: 2021-04
- Subjects: Legumes , Legumes -- Diseases and pests , Hepialidae , Leafhoppers , Pests -- Biological control , Entomopathogenic fungi , Leafhoppers -- Biological control , Hepialidae -- Biological control , Keurboom moth (Leto venus Cramer) , Molopopterus sp. Jacobi , Honeybush (Cyclopia spp.)
- Language: English
- Type: thesis , text , Masters , MSc
- Identifier: http://hdl.handle.net/10962/177125 , vital:42792
- Description: Honeybush, Cyclopia spp. Vent (Fabaceae), farmers have raised pest concerns following commercial cultivation. The Keurboom moth Leto venus Cramer (Lepidoptera: Hepialidae) and the leafhopper Molopopterus sp. Jacobi (Hemiptera: Cicadellidae), are two of the major pests identified in cultivated Honeybush. Laboratory and field studies were conducted to gain an understanding of the biology of these two pests to inform future pest management solutions. Additionally, entomopathogenic fungi were isolated from Honeybush farms and screened for virulence against Molopopterus sp. as a possible management strategy. This study showed that the L. venus infestation on Honeybush was a product of four fixed effects; stem diameter, species of Cyclopia, Farm location and age of the plants. Cyclopia subternata, had the highest likelihood of infestation. Increase in age of the plants resulted in an increase in the stem diameter and therefore a higher probability of infestation. Stem diameter was also shown to be a significant predictor of infestation likelihood. Infestation severity, determined by the number of larvae per plant, was shown to be influenced by three fixed effects; stem diameter, plant species and Farm location. The results also showed that L. venus prefers to initiate penetration at, or just aboveground level. Laboratory studies showed that the leafhopper Molopopterus sp. undergoes five nymphal instars with an average egg incubation time of 20 days, development time from 1st instar to adult of 26 days and average generation time of 47 days. Laboratory experiments revealed variations in host preference by the leafhopper over a period of 15 days. Cyclopia longifolia was identified to be the most preferred species for feeding compared to the two other commonly cultivated species, C. subternata and C. maculata. The results were consistent with those obtained from the field survey which showed that leafhopper density was influenced by four fixed effects; plant species, age of the plant, Farm location and harvesting practices. There were significant differences in leafhopper density in different species with C. longifolia having the highest number of leafhoppers per plant. There were differences in leafhopper density in different farms as 57% of the sampled farms had leafhopper infestations, of these farms, Lodestone and Kurland had the highest leafhopper densities. Harvested plants were shown to have significantly higher leafhopper density than non-harvested plants. Age was also shown to influence leafhopper density, which reduced with an increase in the age of the plants. A total of 20 fungal isolates were recovered from 98 soil samples of which 70% were from Honeybush fields and 30% were from surrounding refugia. Fusarium oxysporum isolates comprised 20% of the recovered isolates, with Metarhizium anisopliae isolates making up the remainder. Laboratory bioassays against adults and nymphs of the leafhopper, Molopopterus sp., showed that F. oxysporum isolates induced 10 – 45% mortality and M. anisopliae isolates induce 30 – 80% mortality. Metarhizium anisopliae isolates J S1, KF S3, KF S11, KF S13, LS1 and LS2 were the most virulent and induced over 60% mortality in both Molopopterus sp. nymphs and adults. The results of this study showed pest preference towards different Cyclopia species. As such, they should be managed differently. Furthermore, L. venus was observed to occur in low densities, hence, it cannot be considered a major pest. However, Molopopterus sp. recorded high population densities making it a major pest in Honeybush production. Positive results indicated that some of the isolated fungal isolates have potential for control, an avenue worth investigating further. , Thesis (MSc) -- Faculty of Science, Department of Zoology and Entomology, 2021
- Full Text:
- Authors: Mushore, Tapiwa Gift
- Date: 2021-04
- Subjects: Legumes , Legumes -- Diseases and pests , Hepialidae , Leafhoppers , Pests -- Biological control , Entomopathogenic fungi , Leafhoppers -- Biological control , Hepialidae -- Biological control , Keurboom moth (Leto venus Cramer) , Molopopterus sp. Jacobi , Honeybush (Cyclopia spp.)
- Language: English
- Type: thesis , text , Masters , MSc
- Identifier: http://hdl.handle.net/10962/177125 , vital:42792
- Description: Honeybush, Cyclopia spp. Vent (Fabaceae), farmers have raised pest concerns following commercial cultivation. The Keurboom moth Leto venus Cramer (Lepidoptera: Hepialidae) and the leafhopper Molopopterus sp. Jacobi (Hemiptera: Cicadellidae), are two of the major pests identified in cultivated Honeybush. Laboratory and field studies were conducted to gain an understanding of the biology of these two pests to inform future pest management solutions. Additionally, entomopathogenic fungi were isolated from Honeybush farms and screened for virulence against Molopopterus sp. as a possible management strategy. This study showed that the L. venus infestation on Honeybush was a product of four fixed effects; stem diameter, species of Cyclopia, Farm location and age of the plants. Cyclopia subternata, had the highest likelihood of infestation. Increase in age of the plants resulted in an increase in the stem diameter and therefore a higher probability of infestation. Stem diameter was also shown to be a significant predictor of infestation likelihood. Infestation severity, determined by the number of larvae per plant, was shown to be influenced by three fixed effects; stem diameter, plant species and Farm location. The results also showed that L. venus prefers to initiate penetration at, or just aboveground level. Laboratory studies showed that the leafhopper Molopopterus sp. undergoes five nymphal instars with an average egg incubation time of 20 days, development time from 1st instar to adult of 26 days and average generation time of 47 days. Laboratory experiments revealed variations in host preference by the leafhopper over a period of 15 days. Cyclopia longifolia was identified to be the most preferred species for feeding compared to the two other commonly cultivated species, C. subternata and C. maculata. The results were consistent with those obtained from the field survey which showed that leafhopper density was influenced by four fixed effects; plant species, age of the plant, Farm location and harvesting practices. There were significant differences in leafhopper density in different species with C. longifolia having the highest number of leafhoppers per plant. There were differences in leafhopper density in different farms as 57% of the sampled farms had leafhopper infestations, of these farms, Lodestone and Kurland had the highest leafhopper densities. Harvested plants were shown to have significantly higher leafhopper density than non-harvested plants. Age was also shown to influence leafhopper density, which reduced with an increase in the age of the plants. A total of 20 fungal isolates were recovered from 98 soil samples of which 70% were from Honeybush fields and 30% were from surrounding refugia. Fusarium oxysporum isolates comprised 20% of the recovered isolates, with Metarhizium anisopliae isolates making up the remainder. Laboratory bioassays against adults and nymphs of the leafhopper, Molopopterus sp., showed that F. oxysporum isolates induced 10 – 45% mortality and M. anisopliae isolates induce 30 – 80% mortality. Metarhizium anisopliae isolates J S1, KF S3, KF S11, KF S13, LS1 and LS2 were the most virulent and induced over 60% mortality in both Molopopterus sp. nymphs and adults. The results of this study showed pest preference towards different Cyclopia species. As such, they should be managed differently. Furthermore, L. venus was observed to occur in low densities, hence, it cannot be considered a major pest. However, Molopopterus sp. recorded high population densities making it a major pest in Honeybush production. Positive results indicated that some of the isolated fungal isolates have potential for control, an avenue worth investigating further. , Thesis (MSc) -- Faculty of Science, Department of Zoology and Entomology, 2021
- Full Text:
Genetic characterisation of a range of geographically distinct Helicoverpa armigera nucleopolyhedrovirus (HearNPV) isolates and evaluation of biological activity against South African populations of the African bollworm, Helicoverpa armigera (Hu bner) (Lepidoptera: Noctuidae)
- Mtambanengwe, Kudzai Tapiwanashe Esau
- Authors: Mtambanengwe, Kudzai Tapiwanashe Esau
- Date: 2019
- Subjects: Helicoverpa armigera -- Biological control -- South Africa , Baculoviruses -- Genetics , Agricultural pests -- Biological control -- South Africa
- Language: English
- Type: text , Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/97334 , vital:31426
- Description: The African bollworm, Helicoverpa armigera Hübner (Lepidoptera: Noctuidae) is a pest of economic and agricultural importance globally. It is a polyphagous pest that feeds on a wide range of host plants including economically important crops. The impact it has on agricultural systems makes its control a priority. The most common method of control is using chemical pesticides; however, continuous application of the pesticides has resulted in the development of resistance. The use of biological control has been investigated and established as an effective method of control as a standalone or part of an integrated pest management (IPM) system. The use of the baculovirus Helicoverpa armigera nucleopolyhedrovirus (HearNPV), has shown promise in the control of H. armigera. Commercial formulations based on the virus are available in many global markets. However, the identification of novel HearNPV isolates will aid in the control of H. armigera as well as provide alternative isolates that may have better virulence. Three new HearNPV isolates were purified and identified from three distinct geographical South African locations H. armigera cadavers and named HearNPV-Albany, HearNPV-KZN and HearNPV-Haygrove. The genomes of two of the HearNPV isolates, namely HearNPV-Albany and HearNPV-KZN were genetically characterised and compared to other geographically distinct HearNPV isolates. Virulence studies were performed comparing the new HearNPV isolates against established commercial HearNPV formulations, Helicovir™ and Helicovex® and other geographically distinct isolated HearNPV, HearNPV-G4 and HearNPV-SP1. Two laboratory colonies were established using H. armigera collected from South African fields in the Belmont Valley near Grahamstown labelled as Albany colony and a colony provided from Haygrove Eden farm near George labelled as Haygrove colony. Biological studies were carried out using the Albany H. armigera colony comparing the rate of development, survival and fertility on bell green peppers, cabbage leaves and on artificial diet. From the biological studies, it was recorded that development and survivorship was best on artificial diet. Regular quality control was required for the maintenance of the colony and continuous generations of healthy larvae were eventually established. Diseased cadavers with signs of baculovirus infection were collected after bioprospecting from the Kwa-Zulu Natal Province in South Africa and were labelled KZN isolate; Belmont Valley near Grahamstown and were labelled Albany isolate; and Haygrove Eden farm near George and were labelled Haygrove isolate for the study. A fourth isolate made up of a crude extract of occlusion bodies (OBs) first described by Whitlock was also analysed and labelled Whitlock isolate. Occlusion bodies were extracted, purified and morphologically identified from the KZN, Albany, Haygrove and Whitlock isolates using TEM. Genomic DNA, which was extracted from the purified OBs. Using PCR, the identity of the OBs as HearNPV was confirmed. Genomic analyses were performed on HearNPV-Albany and HearNPV-KZN through genetic characterisation and comparison with other geographically distinct HearNPV genomes to confirm novelty and establish potential genetic relationships between the isolates through evolutionary distances. Full genomic sequencing of the isolated HearNPV and comparison with other geographically distinct HearNPV isolates identified genomic differences that showed that the HearNPV isolates were novel. HearNPV-Albany and HearNPV-KZN were successfully sequenced and identified as novel isolates with unique fragment patterns and unique gene sequences through deletions or insertions when compared to other geographically distinct HearNPV. This raised the potential for differences in biological activity against H. armigera larvae when tested through biological assays. HearNPV-Whit genome assembly had low quality data which resulted in many gaps and failed assembly. The biological activity of HearNPV isolates from Spain, China, South Africa and two commercial formulations were studied against the laboratory established H. armigera South African colony. The LC50 values of the different South African HearNPV isolates were established to be between 7.7 × 101 OBs.ml-1 for the most effective and 3.2 × 102 OBs.ml-1 for the least effective. The Spanish and Chinese HearNPV isolates resulted in LC50 values of 2.0 × 102 OBs.ml-1 and 1.2 × 101 OBs.ml-1 respectively. The commercial formulations resulted in the least virulence observed with an LC50 of 5.84× 102 OBs.ml-1 and 9.0 × 102 OBs.ml-1 for Helicovex® and Helicovir™ respectively. In this study, novel South African HearNPV isolates were isolated and identified. Through characterisation and bioassays against South African H. armigera populations the HearNPV isolates were shown to have different virulence in comparison to geographically distinct isolates. From this research, there is potential for development of new H. armigera biopesticides based on the novel isolates after field trial testing.
- Full Text:
- Authors: Mtambanengwe, Kudzai Tapiwanashe Esau
- Date: 2019
- Subjects: Helicoverpa armigera -- Biological control -- South Africa , Baculoviruses -- Genetics , Agricultural pests -- Biological control -- South Africa
- Language: English
- Type: text , Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/97334 , vital:31426
- Description: The African bollworm, Helicoverpa armigera Hübner (Lepidoptera: Noctuidae) is a pest of economic and agricultural importance globally. It is a polyphagous pest that feeds on a wide range of host plants including economically important crops. The impact it has on agricultural systems makes its control a priority. The most common method of control is using chemical pesticides; however, continuous application of the pesticides has resulted in the development of resistance. The use of biological control has been investigated and established as an effective method of control as a standalone or part of an integrated pest management (IPM) system. The use of the baculovirus Helicoverpa armigera nucleopolyhedrovirus (HearNPV), has shown promise in the control of H. armigera. Commercial formulations based on the virus are available in many global markets. However, the identification of novel HearNPV isolates will aid in the control of H. armigera as well as provide alternative isolates that may have better virulence. Three new HearNPV isolates were purified and identified from three distinct geographical South African locations H. armigera cadavers and named HearNPV-Albany, HearNPV-KZN and HearNPV-Haygrove. The genomes of two of the HearNPV isolates, namely HearNPV-Albany and HearNPV-KZN were genetically characterised and compared to other geographically distinct HearNPV isolates. Virulence studies were performed comparing the new HearNPV isolates against established commercial HearNPV formulations, Helicovir™ and Helicovex® and other geographically distinct isolated HearNPV, HearNPV-G4 and HearNPV-SP1. Two laboratory colonies were established using H. armigera collected from South African fields in the Belmont Valley near Grahamstown labelled as Albany colony and a colony provided from Haygrove Eden farm near George labelled as Haygrove colony. Biological studies were carried out using the Albany H. armigera colony comparing the rate of development, survival and fertility on bell green peppers, cabbage leaves and on artificial diet. From the biological studies, it was recorded that development and survivorship was best on artificial diet. Regular quality control was required for the maintenance of the colony and continuous generations of healthy larvae were eventually established. Diseased cadavers with signs of baculovirus infection were collected after bioprospecting from the Kwa-Zulu Natal Province in South Africa and were labelled KZN isolate; Belmont Valley near Grahamstown and were labelled Albany isolate; and Haygrove Eden farm near George and were labelled Haygrove isolate for the study. A fourth isolate made up of a crude extract of occlusion bodies (OBs) first described by Whitlock was also analysed and labelled Whitlock isolate. Occlusion bodies were extracted, purified and morphologically identified from the KZN, Albany, Haygrove and Whitlock isolates using TEM. Genomic DNA, which was extracted from the purified OBs. Using PCR, the identity of the OBs as HearNPV was confirmed. Genomic analyses were performed on HearNPV-Albany and HearNPV-KZN through genetic characterisation and comparison with other geographically distinct HearNPV genomes to confirm novelty and establish potential genetic relationships between the isolates through evolutionary distances. Full genomic sequencing of the isolated HearNPV and comparison with other geographically distinct HearNPV isolates identified genomic differences that showed that the HearNPV isolates were novel. HearNPV-Albany and HearNPV-KZN were successfully sequenced and identified as novel isolates with unique fragment patterns and unique gene sequences through deletions or insertions when compared to other geographically distinct HearNPV. This raised the potential for differences in biological activity against H. armigera larvae when tested through biological assays. HearNPV-Whit genome assembly had low quality data which resulted in many gaps and failed assembly. The biological activity of HearNPV isolates from Spain, China, South Africa and two commercial formulations were studied against the laboratory established H. armigera South African colony. The LC50 values of the different South African HearNPV isolates were established to be between 7.7 × 101 OBs.ml-1 for the most effective and 3.2 × 102 OBs.ml-1 for the least effective. The Spanish and Chinese HearNPV isolates resulted in LC50 values of 2.0 × 102 OBs.ml-1 and 1.2 × 101 OBs.ml-1 respectively. The commercial formulations resulted in the least virulence observed with an LC50 of 5.84× 102 OBs.ml-1 and 9.0 × 102 OBs.ml-1 for Helicovex® and Helicovir™ respectively. In this study, novel South African HearNPV isolates were isolated and identified. Through characterisation and bioassays against South African H. armigera populations the HearNPV isolates were shown to have different virulence in comparison to geographically distinct isolates. From this research, there is potential for development of new H. armigera biopesticides based on the novel isolates after field trial testing.
- Full Text:
Biotic and abiotic factors promoting the development and proliferation of water hyacinth (eichhornia crassipes (Mart.) Solms-Laub.) in the Wouri Basin (Douala-Cameroon) and environs, with implications for its control
- Voukeng, Sonia Nadege Kenfack
- Authors: Voukeng, Sonia Nadege Kenfack
- Date: 2017
- Language: English
- Type: text , Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/7644 , vital:21281
- Description: The Wouri River, situated in the Wouri Basin, is one of the main rivers of the Littoral Region in the city of Douala in Cameroon. It is a source of income and food for the population living around these areas. Since the 1990s, the fishing, transportation, irrigation and sand extraction activities have been impeded by the invasion of aquatic plants, specifically water hyacinth (Eichhornia crassipes [Mart.] Solms-Laubach: Pontederiaceae). Introduced in 1997 to the shore of Lake Chad, water hyacinth has invaded almost 114 ha of the Wouri Basin. Furthermore, Douala, the economic capital of the Cameroon and location for more than 70% of the country’s industries, uses the Wouri River and its tributaries to deposit its effluent and waste, which has worsened the problem of water hyacinth. This thesis examined the ecological and socio-economic impacts of water hyacinth in the Wouri Basin and its possible control. An increase in the nutrients in the water has provided water hyacinth with appropriate conditions for its fast growth during both the rainy and dry seasons. The availability of nutrients in these areas is enhanced by the constant, daily tidal fluctuation of water, providing enough water to the plant for easy nutrient uptake. A survey of the impacts of water hyacinth on aquatic plant communities in the Wouri Basin showed that this plant is able to out-compete native species. Assessment of the impact of water hyacinth on the abundance and diversity of plant communities indicated that at some invaded sites, 65% of the vegetation consisted of water hyacinth. Species found in association with water hyacinth with a high level of abundance-dominance were Pistia stratiotes L. (Araceae) (another invader), Commelina benghalensis L. (Commelinaceae) and Echinochloa pyramidalis (Lam.) Hitchc. & Chase (Poaceae). This component of the study also showed that habitats rich in water hyacinth were poor in diversity, while habitats without water hyacinth were rich in diversity, thus raising awareness of the importance of monitoring invasive aquatic weeds along the Wouri Basin, and of implementing correct control management of all invasive aquatic weeds. Communities living along the invaded rivers are well aware of the range of problems caused by the weed; because as the rivers and water bodies used for fishing, transportation, and sand extraction are progressively invaded by the weed, the riparian population is the first to feel the impact. The impact on people has been noticeable, with an increase in diseases, such as malaria, cholera, diarrhoea, typhoid, filariasis, schistosomiasis, scabies and yellow fever increasing the need for a medicine and hospitalization. Economic losses due to the management of invasive aquatic weeds were recorded, and the Ministry of Environment spent an estimated US$1 200 000 between 2010 and 2015 to manage this scourge. In 2016, an amount of US$160 000 was transferred to these regions to manage invasive aquatic weeds, especially water hyacinth, although manual clearing is still the only method used to control this weed. Isolation of fungi from diseased water hyacinth plants in the Wouri Basin revealed several fungal species, most of which have been isolated from water hyacinth species in water bodies elsewhere, which showed a higher diversity during the dry season than during the rainy season. These fungi included Acremonium zonatum (Sawada). W. Gams (Hypocreaceae), Alternaria eichhorniae Nag Raj & Ponnappa (Pleosporaceae), Chaetomium sp., Colletotrichum sp., Curvularia pallescens Boedjin (Pleosporaceae), Curvalaria sp., Epicoccum nigrum Link (Pleosporaceae), Fusarium sp., Pithomyces chartarum fBerk. & M. A. Curtis) M. B. Ellis (Montagnulaceae), to a lesser extent Myrothecium roridum Tode ex Fr. (Incertae sedis) and Nigrospora sp. Although never released in Cameroon, arthropod biological control agents (Neochetina eichhorniae Warner (Coleoptera, Curculionidae) and N. bruchi Hustache (Coleoptera, Curculionidae)) were present, but their populations were relatively low. The slow spread of the insect population was explained by several factors, among them the tidal fluctuation of water, which has an impact on the population growth of the weevils. Whilst adults may be able to survive tidal fluctuations, larvae are severely impacted by them, contributing to the slow success of biological control. In this study, a significant increase in pathogen-induced disease severity and incidence was noted when Neochetina eichhorniae weevils were present, possibly because larvae tunnelling on the petiole created openings for the penetration of fungal spores. This study highlights the negative impacts of water hyacinth, on the environment, people, and thus economy of Cameroon. The presence of biological control agents and pathogens offers Cameroon the possibility of initiating and properly implementing the biological control option, or an integrated management solution, to manage water hyacinth in the Wouri Basin, and in the rest of Cameroon.
- Full Text:
- Authors: Voukeng, Sonia Nadege Kenfack
- Date: 2017
- Language: English
- Type: text , Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/7644 , vital:21281
- Description: The Wouri River, situated in the Wouri Basin, is one of the main rivers of the Littoral Region in the city of Douala in Cameroon. It is a source of income and food for the population living around these areas. Since the 1990s, the fishing, transportation, irrigation and sand extraction activities have been impeded by the invasion of aquatic plants, specifically water hyacinth (Eichhornia crassipes [Mart.] Solms-Laubach: Pontederiaceae). Introduced in 1997 to the shore of Lake Chad, water hyacinth has invaded almost 114 ha of the Wouri Basin. Furthermore, Douala, the economic capital of the Cameroon and location for more than 70% of the country’s industries, uses the Wouri River and its tributaries to deposit its effluent and waste, which has worsened the problem of water hyacinth. This thesis examined the ecological and socio-economic impacts of water hyacinth in the Wouri Basin and its possible control. An increase in the nutrients in the water has provided water hyacinth with appropriate conditions for its fast growth during both the rainy and dry seasons. The availability of nutrients in these areas is enhanced by the constant, daily tidal fluctuation of water, providing enough water to the plant for easy nutrient uptake. A survey of the impacts of water hyacinth on aquatic plant communities in the Wouri Basin showed that this plant is able to out-compete native species. Assessment of the impact of water hyacinth on the abundance and diversity of plant communities indicated that at some invaded sites, 65% of the vegetation consisted of water hyacinth. Species found in association with water hyacinth with a high level of abundance-dominance were Pistia stratiotes L. (Araceae) (another invader), Commelina benghalensis L. (Commelinaceae) and Echinochloa pyramidalis (Lam.) Hitchc. & Chase (Poaceae). This component of the study also showed that habitats rich in water hyacinth were poor in diversity, while habitats without water hyacinth were rich in diversity, thus raising awareness of the importance of monitoring invasive aquatic weeds along the Wouri Basin, and of implementing correct control management of all invasive aquatic weeds. Communities living along the invaded rivers are well aware of the range of problems caused by the weed; because as the rivers and water bodies used for fishing, transportation, and sand extraction are progressively invaded by the weed, the riparian population is the first to feel the impact. The impact on people has been noticeable, with an increase in diseases, such as malaria, cholera, diarrhoea, typhoid, filariasis, schistosomiasis, scabies and yellow fever increasing the need for a medicine and hospitalization. Economic losses due to the management of invasive aquatic weeds were recorded, and the Ministry of Environment spent an estimated US$1 200 000 between 2010 and 2015 to manage this scourge. In 2016, an amount of US$160 000 was transferred to these regions to manage invasive aquatic weeds, especially water hyacinth, although manual clearing is still the only method used to control this weed. Isolation of fungi from diseased water hyacinth plants in the Wouri Basin revealed several fungal species, most of which have been isolated from water hyacinth species in water bodies elsewhere, which showed a higher diversity during the dry season than during the rainy season. These fungi included Acremonium zonatum (Sawada). W. Gams (Hypocreaceae), Alternaria eichhorniae Nag Raj & Ponnappa (Pleosporaceae), Chaetomium sp., Colletotrichum sp., Curvularia pallescens Boedjin (Pleosporaceae), Curvalaria sp., Epicoccum nigrum Link (Pleosporaceae), Fusarium sp., Pithomyces chartarum fBerk. & M. A. Curtis) M. B. Ellis (Montagnulaceae), to a lesser extent Myrothecium roridum Tode ex Fr. (Incertae sedis) and Nigrospora sp. Although never released in Cameroon, arthropod biological control agents (Neochetina eichhorniae Warner (Coleoptera, Curculionidae) and N. bruchi Hustache (Coleoptera, Curculionidae)) were present, but their populations were relatively low. The slow spread of the insect population was explained by several factors, among them the tidal fluctuation of water, which has an impact on the population growth of the weevils. Whilst adults may be able to survive tidal fluctuations, larvae are severely impacted by them, contributing to the slow success of biological control. In this study, a significant increase in pathogen-induced disease severity and incidence was noted when Neochetina eichhorniae weevils were present, possibly because larvae tunnelling on the petiole created openings for the penetration of fungal spores. This study highlights the negative impacts of water hyacinth, on the environment, people, and thus economy of Cameroon. The presence of biological control agents and pathogens offers Cameroon the possibility of initiating and properly implementing the biological control option, or an integrated management solution, to manage water hyacinth in the Wouri Basin, and in the rest of Cameroon.
- Full Text:
Developing an attractant for monitoring fruit-feeding moths in citrus orchards
- Authors: Goddard, Mathew Keith
- Date: 2016
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/2981 , vital:20349
- Description: Fruit-piercing moths are a sporadic pest of citrus, especially in the Eastern Cape Province of South Africa, where the adults can cause significant damage in outbreak years. Currently the only way in which to successfully control fruit-feeding moths within the orchards is the use of repellent lights. However, growers confuse fruit-piercing moths with fruit-sucking moths that don‘t cause primary damage, and there is no way of monitoring which moth species are attacking the fruit in the orchards during the night. In a previous study, banana was shown to be the most attractive bait for a variety of fruit-feeding moth species. Therefore the aim of this study was to determine the population dynamics of fruit-feeding moths develop a cost-effective alternative to the use of fresh banana as a bait for fruit-piercing moths. Fresh banana was compared to nine alternative synthetic attractants, frozen banana and a control under field conditions in several orchards in the Eastern Cape Province. Once again, banana was shown to be the most attractive bait. Some 23 species of fruit-feeding moth species were sampled in the traps, but there was only two fruit-piercing species, Serrodes partita (Fabricius) (Lepidoptera: Noctuidae) and Eudocima sp. Surprisingly S. partita, which was thought to be the main pest, comprised only 6.9% of trap catches. Serrodes partita, is a sporadic pest, only becoming problematic every five to 10 years after good rainfall in the Little Karoo region that causes flushes of their larval host, wild plum, Pappea capensis (Ecklon and Zeyher). During these outbreaks, damage to fruit can range from 70 to 90% and this is especially so for soft skinned citrus. A study on the morphology of the proboscis confirmed that only two species of fruit-piercing moths were present. Trap catches over three citrus growing seasons was linked to fruit damage found within several orchards. Once again fruit-piercing moth damage was relatively low in comparison to other types of damage such as mechanical and undefined damage. There was a very weak correlation between S. partita trap catches and damage, but generally damage was recorded two to three weeks after a peak in S. partita trap catches. Climatic conditions were also recorded and compared to weekly trap catches of S. partita, and while temperature and wind direction had no influence on moth populations, precipitation in the orchards was weakly correlated with trap catches. This study has shown that in non-outbreak seasons, the main fruit-piercing moth, S. partita comprises a small percentage of fruit-feeding moths in citrus orchards, but that growers are unable to determine the difference between fruit-piercing species and the harmless fruit-sucking species. Further fresh banana remains the best method for attracting fruit-piecing moths to traps, but this is not cost effective and thus a commercially viable protocol for monitoring these species remains elusive.
- Full Text:
- Authors: Goddard, Mathew Keith
- Date: 2016
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/2981 , vital:20349
- Description: Fruit-piercing moths are a sporadic pest of citrus, especially in the Eastern Cape Province of South Africa, where the adults can cause significant damage in outbreak years. Currently the only way in which to successfully control fruit-feeding moths within the orchards is the use of repellent lights. However, growers confuse fruit-piercing moths with fruit-sucking moths that don‘t cause primary damage, and there is no way of monitoring which moth species are attacking the fruit in the orchards during the night. In a previous study, banana was shown to be the most attractive bait for a variety of fruit-feeding moth species. Therefore the aim of this study was to determine the population dynamics of fruit-feeding moths develop a cost-effective alternative to the use of fresh banana as a bait for fruit-piercing moths. Fresh banana was compared to nine alternative synthetic attractants, frozen banana and a control under field conditions in several orchards in the Eastern Cape Province. Once again, banana was shown to be the most attractive bait. Some 23 species of fruit-feeding moth species were sampled in the traps, but there was only two fruit-piercing species, Serrodes partita (Fabricius) (Lepidoptera: Noctuidae) and Eudocima sp. Surprisingly S. partita, which was thought to be the main pest, comprised only 6.9% of trap catches. Serrodes partita, is a sporadic pest, only becoming problematic every five to 10 years after good rainfall in the Little Karoo region that causes flushes of their larval host, wild plum, Pappea capensis (Ecklon and Zeyher). During these outbreaks, damage to fruit can range from 70 to 90% and this is especially so for soft skinned citrus. A study on the morphology of the proboscis confirmed that only two species of fruit-piercing moths were present. Trap catches over three citrus growing seasons was linked to fruit damage found within several orchards. Once again fruit-piercing moth damage was relatively low in comparison to other types of damage such as mechanical and undefined damage. There was a very weak correlation between S. partita trap catches and damage, but generally damage was recorded two to three weeks after a peak in S. partita trap catches. Climatic conditions were also recorded and compared to weekly trap catches of S. partita, and while temperature and wind direction had no influence on moth populations, precipitation in the orchards was weakly correlated with trap catches. This study has shown that in non-outbreak seasons, the main fruit-piercing moth, S. partita comprises a small percentage of fruit-feeding moths in citrus orchards, but that growers are unable to determine the difference between fruit-piercing species and the harmless fruit-sucking species. Further fresh banana remains the best method for attracting fruit-piecing moths to traps, but this is not cost effective and thus a commercially viable protocol for monitoring these species remains elusive.
- Full Text:
Aquatic invasions of the Nseleni River system: causes, consequences and control
- Authors: Jones, Roy William
- Date: 2015
- Subjects: Gastropoda -- South Africa , Introduced snails -- South Africa , Introduced mollusks -- South Africa , Loricariidae , Introduced fishes -- South Africa , Water hyacinth , Alien plants -- South Africa
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:5928 , http://hdl.handle.net/10962/d1017806
- Description: Globalization has seen an unprecedented dispersal of exotic and alien species worldwide resulting in worldwide homogenization and sometimes extinction of indigenous or endemic taxa. When an exotic species becomes established in a new habitat the invasive organisms are capable of having an impact on indigenous community dynamics and the overall structure and function of ecosystems. Furthermore, the impact of invasion is determined by the geographical range, abundance and the per-capita or per-biomass effect of the invader. However, the success of the introduced organisms is reliant on their ability to acclimate to the physiochemical conditions of the newly invaded environment.Freshwater ecosystems are especially vulnerable to invasions because there are numerous potential routes of introduction including intentional pathways such as stocking, and unintentional pathways such as the release of ballast water and aquarium releases. Efforts to limit the introduction of invasive species or to manage established exotic populations are often hindered by insufficient understanding of the natural history of problematic species. Relatively little is known regarding the physiological tolerances of many taxa. Knowledge about specific species ecophysiological constraints allows for the prediction of future patterns of invasion more accurately, including where an introduced organism would probably survive, thrive and disperse. Furthermore, data on the physiological tolerances of an introduced exotic organism may provide data necessary for effective management and control. This studyinvestigated three invasive species in the Nseleni River system in a protected area in KwaZulu-Natal. The species studied were, Tarebia granifera (Quilted melania – Lamarck, 1822), Pterygoplichthys disjunctivus (Suckermouth armoured catfish - Weber, 1991) and Eichhornia crassipes (water hyacinth – (Martius) Solms-Laubach,). The Nseleni River flows into Lake Nsezi which is responsible for providing potable water to the surrounding towns and industry, as well as the surrounding rural communities. The Enseleni Nature reserve has become the centre for biodiversity dispersal in the immediate area, due to the change in landscape surrounding the protected area.An important step in developing alien invasive species management strategies in protected areas is determining their extent and invasive traits. Tarebia granifera is a prosobranch gastropod originally from South-East Asia that has become invasive in several countries around the world including South Africa. Snail populations were sampled at nine sites throughout the Nseleni/Mposa river system every six weeks over a twelve month period. The snail was abundant throughout the system, especially in shallow waters of less than 1m in depth.The first positive identification the loricariid catfish Pterygoplichthys disjunctivus for the Nseleni River was in 2006. The original introduction is believed to have been via the aquarium trade. The aim of the study was to assess the usefulness of the unified framework with regard to management of fish invasions by assessing the invasion stage of the loricariid population and identifying appropriate management actions using the Blackburn et al. (2011) framework. The fish were sampled at nine different sites and three different depths over a period of twelve months, as well as when two ichthyological surveys were carried out on the Nseleni River system. This invasive fish has been located throughout the system and both male and female fish were collected. The smallest fish sampled was a fingerling of a day or two old and the smallest pregnant female was a mere 270mm TL. This is a clear indication that this fish is breeding in the river system.Although T. granifera and P. disjunctivus were abundant in the Nseleni/Mposa river system, it was not clear what their role in the system was, and in particular if they were competing with any of the indigenous species. Therefore, isotope samples were collected from numerous taxa over a two week period, with the exception of Pterygoplichthys disjunctivus samples, which were collected over 12 months. The δ13C and δ15N signatures of all samples were determined. The niche overlap between the invasive and indigenous snails was effectively zero (1.02E-13%), indicating no shared food resources. The medium ranges of dNRb (7.14) and dCRb (9.07) for the invasive fish indicate that it utilizes a wider range of food resources and trophic levels than the majority of indigenous fish. A medium CDb value (2.34) for the invasive fish species, P. disjunctivus, describes medium trophic diversity, with three indigenous species possessing higher diversity and three possessing lower diversity. Furtherresults indicated that there was no direct dietary competition between P. disjunctivus and indigenous species. Eichhornia crassipes was first recorded on the Nseleni River in 1978, and has been shown to have a significant negative impact on the biodiversity of the Nseleni/Mposa River system and therefore required a control intervention. Although biological control using the two weevil species Neochetina eichhornia (Warner) and N. bruchi (Hustache) has been credited with affecting a good level of control, the lack of a manipulated post-release evaluation experiments has undermined this statement. Five experimental plots of water hyacinth of 20m2 were sprayed with an insecticide to control weevils. After ten months the plants in the sprayed plots were significantly bigger and heavier than those in the control plots that had natural populations of the biological control agents. This study has shown unequivocally that biological control has contributed significantly to the control of water hyacinth on the Nseleni/Mposa River system.The management plan for the Enseleni Nature Reserve identifies the need to control invasive and/or exotic organisms within the boundary of the protected area. In addition, set guidelines have been implemented on how to control these organisms, so that indigenous organisms are least affected. Lack of control of exotic organisms can have serious consequences for indigenous species. It is therefore of utmost importance that the population dynamics of the invading organism be understood, what the potential impact could be and how to control them. Furthermore, it has also acknowledged the threat of possible exotic species invasions from outside of the protected area that might result in threats to the protected area and that these must be investigated, researched and managed.This thesis has identified Tarebia granifera, Pterygoplichthys disjunctivus and Eichhornia crassipes as being a threat to indigenous biodiversity within the protected area, as well as in adjacent areas to the protected area. The thesis will therefore investigate the hypothesis that both Tarebia granifera and Pterygoplichthys disjunctivus are having a direct negative effect on available food resources for indigenous species of organisms. In addition, this thesis will investigate if theNeochetina species that have previously been introduced onto E. crassipes are having any negative effect on this invasive alien aquatic plant.
- Full Text:
- Authors: Jones, Roy William
- Date: 2015
- Subjects: Gastropoda -- South Africa , Introduced snails -- South Africa , Introduced mollusks -- South Africa , Loricariidae , Introduced fishes -- South Africa , Water hyacinth , Alien plants -- South Africa
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:5928 , http://hdl.handle.net/10962/d1017806
- Description: Globalization has seen an unprecedented dispersal of exotic and alien species worldwide resulting in worldwide homogenization and sometimes extinction of indigenous or endemic taxa. When an exotic species becomes established in a new habitat the invasive organisms are capable of having an impact on indigenous community dynamics and the overall structure and function of ecosystems. Furthermore, the impact of invasion is determined by the geographical range, abundance and the per-capita or per-biomass effect of the invader. However, the success of the introduced organisms is reliant on their ability to acclimate to the physiochemical conditions of the newly invaded environment.Freshwater ecosystems are especially vulnerable to invasions because there are numerous potential routes of introduction including intentional pathways such as stocking, and unintentional pathways such as the release of ballast water and aquarium releases. Efforts to limit the introduction of invasive species or to manage established exotic populations are often hindered by insufficient understanding of the natural history of problematic species. Relatively little is known regarding the physiological tolerances of many taxa. Knowledge about specific species ecophysiological constraints allows for the prediction of future patterns of invasion more accurately, including where an introduced organism would probably survive, thrive and disperse. Furthermore, data on the physiological tolerances of an introduced exotic organism may provide data necessary for effective management and control. This studyinvestigated three invasive species in the Nseleni River system in a protected area in KwaZulu-Natal. The species studied were, Tarebia granifera (Quilted melania – Lamarck, 1822), Pterygoplichthys disjunctivus (Suckermouth armoured catfish - Weber, 1991) and Eichhornia crassipes (water hyacinth – (Martius) Solms-Laubach,). The Nseleni River flows into Lake Nsezi which is responsible for providing potable water to the surrounding towns and industry, as well as the surrounding rural communities. The Enseleni Nature reserve has become the centre for biodiversity dispersal in the immediate area, due to the change in landscape surrounding the protected area.An important step in developing alien invasive species management strategies in protected areas is determining their extent and invasive traits. Tarebia granifera is a prosobranch gastropod originally from South-East Asia that has become invasive in several countries around the world including South Africa. Snail populations were sampled at nine sites throughout the Nseleni/Mposa river system every six weeks over a twelve month period. The snail was abundant throughout the system, especially in shallow waters of less than 1m in depth.The first positive identification the loricariid catfish Pterygoplichthys disjunctivus for the Nseleni River was in 2006. The original introduction is believed to have been via the aquarium trade. The aim of the study was to assess the usefulness of the unified framework with regard to management of fish invasions by assessing the invasion stage of the loricariid population and identifying appropriate management actions using the Blackburn et al. (2011) framework. The fish were sampled at nine different sites and three different depths over a period of twelve months, as well as when two ichthyological surveys were carried out on the Nseleni River system. This invasive fish has been located throughout the system and both male and female fish were collected. The smallest fish sampled was a fingerling of a day or two old and the smallest pregnant female was a mere 270mm TL. This is a clear indication that this fish is breeding in the river system.Although T. granifera and P. disjunctivus were abundant in the Nseleni/Mposa river system, it was not clear what their role in the system was, and in particular if they were competing with any of the indigenous species. Therefore, isotope samples were collected from numerous taxa over a two week period, with the exception of Pterygoplichthys disjunctivus samples, which were collected over 12 months. The δ13C and δ15N signatures of all samples were determined. The niche overlap between the invasive and indigenous snails was effectively zero (1.02E-13%), indicating no shared food resources. The medium ranges of dNRb (7.14) and dCRb (9.07) for the invasive fish indicate that it utilizes a wider range of food resources and trophic levels than the majority of indigenous fish. A medium CDb value (2.34) for the invasive fish species, P. disjunctivus, describes medium trophic diversity, with three indigenous species possessing higher diversity and three possessing lower diversity. Furtherresults indicated that there was no direct dietary competition between P. disjunctivus and indigenous species. Eichhornia crassipes was first recorded on the Nseleni River in 1978, and has been shown to have a significant negative impact on the biodiversity of the Nseleni/Mposa River system and therefore required a control intervention. Although biological control using the two weevil species Neochetina eichhornia (Warner) and N. bruchi (Hustache) has been credited with affecting a good level of control, the lack of a manipulated post-release evaluation experiments has undermined this statement. Five experimental plots of water hyacinth of 20m2 were sprayed with an insecticide to control weevils. After ten months the plants in the sprayed plots were significantly bigger and heavier than those in the control plots that had natural populations of the biological control agents. This study has shown unequivocally that biological control has contributed significantly to the control of water hyacinth on the Nseleni/Mposa River system.The management plan for the Enseleni Nature Reserve identifies the need to control invasive and/or exotic organisms within the boundary of the protected area. In addition, set guidelines have been implemented on how to control these organisms, so that indigenous organisms are least affected. Lack of control of exotic organisms can have serious consequences for indigenous species. It is therefore of utmost importance that the population dynamics of the invading organism be understood, what the potential impact could be and how to control them. Furthermore, it has also acknowledged the threat of possible exotic species invasions from outside of the protected area that might result in threats to the protected area and that these must be investigated, researched and managed.This thesis has identified Tarebia granifera, Pterygoplichthys disjunctivus and Eichhornia crassipes as being a threat to indigenous biodiversity within the protected area, as well as in adjacent areas to the protected area. The thesis will therefore investigate the hypothesis that both Tarebia granifera and Pterygoplichthys disjunctivus are having a direct negative effect on available food resources for indigenous species of organisms. In addition, this thesis will investigate if theNeochetina species that have previously been introduced onto E. crassipes are having any negative effect on this invasive alien aquatic plant.
- Full Text:
Biological control as an integrated control method in the management of aquatic weeds in an urban environmental and socio-political landscape : case study : Cape Town Metropolitan Area
- Authors: Stafford, Martha Louise
- Date: 2014
- Subjects: Aquatic weeds -- South Africa -- Cape Town , Aquatic weeds -- Biological control -- South Africa -- Cape Town , Water hyacinth -- Biological control -- South Africa -- Cape Town , Metropolitan areas -- South Africa -- Cape Town
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5874 , http://hdl.handle.net/10962/d1013015
- Description: Aquatic weeds transform and degrade the ecosystems which they invade, impacting various aspects of their surroundings ranging from the community level to disrupting important processes affecting ecosystem services. All of the major aquatic weeds of South Africa are found in the Cape Town Metropolitan Area. Landowners, whether private or public, are legally obliged to manage the listed invasive species through applying environmentally acceptable methodologies. This thesis provides an overview of the strategic management options, prevention, early detection, rapid response and eradication of new invasions, and containment and control species of established species. It discusses the different control methods available for managing aquatic weeds, namely mechanical, manual, chemical and biological, and the integration of different methods to improve their effectiveness. Although various studies have shown that biological control is the most cost–effective, environmentally-friendly and sustainable method, it is not yet fully integrated into weed management programmes in South Africa. In addition, the successes achieved in other parts of the world with the control of water hyacinth through biological control have not been repeated in the urban environment, despite the fact that South Africa has the highest number of biological control agents available for the weed. Urbanisation puts pressure on the natural environment and ecosystem functioning. Nutrient-enriched waters support aquatic weed growth and pose a challenge to the management thereof, in particular with regard to integrating biological control into management programmes. The aims of this study were to determine the reasons for the lack of integration of biological control into weed management programmes in South Africa, to determine the feasibility of integrating biological control in aquatic weed management programmes in a complex urban environmental and socio-political landscape by means of three case studies in the Cape Town Metropolitan Area, which showed that biological control is feasible in urban environments and should be considered. Two surveys were conducted to determine the reasons for the lack of integration of biological control into weed management programmes. The surveys showed that there is a gap between research and implementation as a result of poor communication, non-supporting institutional arrangements and a lack of appropriate capacity and skills at the implementation level. Recommendations were offered to address these issues.
- Full Text:
- Authors: Stafford, Martha Louise
- Date: 2014
- Subjects: Aquatic weeds -- South Africa -- Cape Town , Aquatic weeds -- Biological control -- South Africa -- Cape Town , Water hyacinth -- Biological control -- South Africa -- Cape Town , Metropolitan areas -- South Africa -- Cape Town
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5874 , http://hdl.handle.net/10962/d1013015
- Description: Aquatic weeds transform and degrade the ecosystems which they invade, impacting various aspects of their surroundings ranging from the community level to disrupting important processes affecting ecosystem services. All of the major aquatic weeds of South Africa are found in the Cape Town Metropolitan Area. Landowners, whether private or public, are legally obliged to manage the listed invasive species through applying environmentally acceptable methodologies. This thesis provides an overview of the strategic management options, prevention, early detection, rapid response and eradication of new invasions, and containment and control species of established species. It discusses the different control methods available for managing aquatic weeds, namely mechanical, manual, chemical and biological, and the integration of different methods to improve their effectiveness. Although various studies have shown that biological control is the most cost–effective, environmentally-friendly and sustainable method, it is not yet fully integrated into weed management programmes in South Africa. In addition, the successes achieved in other parts of the world with the control of water hyacinth through biological control have not been repeated in the urban environment, despite the fact that South Africa has the highest number of biological control agents available for the weed. Urbanisation puts pressure on the natural environment and ecosystem functioning. Nutrient-enriched waters support aquatic weed growth and pose a challenge to the management thereof, in particular with regard to integrating biological control into management programmes. The aims of this study were to determine the reasons for the lack of integration of biological control into weed management programmes in South Africa, to determine the feasibility of integrating biological control in aquatic weed management programmes in a complex urban environmental and socio-political landscape by means of three case studies in the Cape Town Metropolitan Area, which showed that biological control is feasible in urban environments and should be considered. Two surveys were conducted to determine the reasons for the lack of integration of biological control into weed management programmes. The surveys showed that there is a gap between research and implementation as a result of poor communication, non-supporting institutional arrangements and a lack of appropriate capacity and skills at the implementation level. Recommendations were offered to address these issues.
- Full Text:
"Is more, less?" : insect-insect interactions in a biological control context using water hyacinth as a model
- Weyl, Philip Sebastian Richard
- Authors: Weyl, Philip Sebastian Richard
- Date: 2012
- Subjects: Water hyacinth -- South Africa -- Eastern Cape , Water hyacinth -- Biological control -- South Africa -- Eastern Cape , Insects as biological pest control agents , Miridae -- South Africa -- Eastern Cape , Beetles -- South Africa -- Eastern Cape , Competition (Biology)
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5724 , http://hdl.handle.net/10962/d1005410 , Water hyacinth -- South Africa -- Eastern Cape , Water hyacinth -- Biological control -- South Africa -- Eastern Cape , Insects as biological pest control agents , Miridae -- South Africa -- Eastern Cape , Beetles -- South Africa -- Eastern Cape , Competition (Biology)
- Description: Interactions between insects have been shown to be important regulators of population abundances and dynamics as well as drivers of spatial segregation and distribution. These are important aspects of the ecology of insects used in biological control and may have implications for the overall success of a particular programme. In the history of biological control there has been a tendency to release a suite of agents against a weed, which in some cases has increased the level of success, while in others little change has been observed. In most of these cases the implications of increasing the level of complexity of the system is not taken into account and there is little research on the effect of releasing another agent into the system. A brief meta-analysis was done on all the biological control programmes initiated in South Africa. Emphasis was placed on multi-species releases and the effects that overlapping niches were having on the number of agents responsible for the success of a programme. Where overlapping niches were present among agents released the number of agents responsible for success was lower than the number established. Water hyacinth, Eichhornia crassipes (Martius) Solms-Laubach in South Africa has more arthropod agents released against it than anywhere else in the world, yet control has been variable. If the biology and host utilisation of all the agents against water hyacinth is considered, a definite overlap of niches is apparent in at least one life stage of all the agents. Therefore the probability of these insects interacting is high, especially if they are established at the same site in the field. Three of the insects released in South Africa have been selected to investigate possible interactions. They are Neochetina eichhorniae Warner, Neochetina bruchi Hustache and Eccritotarsus catarinensis (Carvalho). Y-tube olfactometer bioassays were used to measure responses of these insects to water hyacinth with prior feeding damage by either conspecifics or heterospecifics. This was done to determine whether olfactory cues played a role in host acceptability and avoidance of conspecifics or heterospecifics. The insects were given a choice between damaged and undamaged plants in various combinations. There was a significant preference for the undamaged plants when given a choice between undamaged and damaged plants. However when the insects were given a choice between two damaged plants there was no discrimination between heterospecific or conspecific damaged plants. This may indicate that there is little or no ecological cost for the insect to share a plant with other insects utilising a similar resource. Insect – insect interactions were investigated in a common garden plot experiment to measure the impact that pairwise combinations of the insect may have on their performance. There was a significant interaction between the mirid E. catarinensis and the weevil N. eichhorniae, with the weevil not performing as well when in combination with the mirid than when alone. Interestingly there was a negative interaction between the two weevil species when in combination, however it was impossible to determine which species was being affected if not both. None of the insects performed significantly better when in combination with another insect. A field study on Wriggleswade Dam in the Eastern Cape, South Africa was initiated to determine whether the relationship between the mirid E. catarinensis and the weevil N. eichhorniae could be determined in the field. The performance of the insects at the different sites in the field suggests that there was an interaction between the agents. This interaction did not limit the establishment of either insect at a site, but it did result in one insect dominating at a site over another. Interactions between the three species of insect tested in this thesis suggest that there are both negative and neutral relationships between them. A basic comparison between the insect performances from 15 sites around the country was done to determine if the spatial segregation observed in the field could be extrapolated to the natural South African situation. The interaction observed between N. eichhorniae and E. catarinensis does seem to extrapolate to the general South African situation where there is definite spatial segregation on a landscape level. The co–occurrence of the two Neochetina weevils at these sites suggests that the negative relationship observed between them in the common garden experiment does not extrapolate to the field. The results from this thesis suggest that the interactions between the agents tested would not limit establishment or have significant ramifications on performance. However, there may be spatial and temporal segregation of these species in the introduced range.
- Full Text:
- Authors: Weyl, Philip Sebastian Richard
- Date: 2012
- Subjects: Water hyacinth -- South Africa -- Eastern Cape , Water hyacinth -- Biological control -- South Africa -- Eastern Cape , Insects as biological pest control agents , Miridae -- South Africa -- Eastern Cape , Beetles -- South Africa -- Eastern Cape , Competition (Biology)
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5724 , http://hdl.handle.net/10962/d1005410 , Water hyacinth -- South Africa -- Eastern Cape , Water hyacinth -- Biological control -- South Africa -- Eastern Cape , Insects as biological pest control agents , Miridae -- South Africa -- Eastern Cape , Beetles -- South Africa -- Eastern Cape , Competition (Biology)
- Description: Interactions between insects have been shown to be important regulators of population abundances and dynamics as well as drivers of spatial segregation and distribution. These are important aspects of the ecology of insects used in biological control and may have implications for the overall success of a particular programme. In the history of biological control there has been a tendency to release a suite of agents against a weed, which in some cases has increased the level of success, while in others little change has been observed. In most of these cases the implications of increasing the level of complexity of the system is not taken into account and there is little research on the effect of releasing another agent into the system. A brief meta-analysis was done on all the biological control programmes initiated in South Africa. Emphasis was placed on multi-species releases and the effects that overlapping niches were having on the number of agents responsible for the success of a programme. Where overlapping niches were present among agents released the number of agents responsible for success was lower than the number established. Water hyacinth, Eichhornia crassipes (Martius) Solms-Laubach in South Africa has more arthropod agents released against it than anywhere else in the world, yet control has been variable. If the biology and host utilisation of all the agents against water hyacinth is considered, a definite overlap of niches is apparent in at least one life stage of all the agents. Therefore the probability of these insects interacting is high, especially if they are established at the same site in the field. Three of the insects released in South Africa have been selected to investigate possible interactions. They are Neochetina eichhorniae Warner, Neochetina bruchi Hustache and Eccritotarsus catarinensis (Carvalho). Y-tube olfactometer bioassays were used to measure responses of these insects to water hyacinth with prior feeding damage by either conspecifics or heterospecifics. This was done to determine whether olfactory cues played a role in host acceptability and avoidance of conspecifics or heterospecifics. The insects were given a choice between damaged and undamaged plants in various combinations. There was a significant preference for the undamaged plants when given a choice between undamaged and damaged plants. However when the insects were given a choice between two damaged plants there was no discrimination between heterospecific or conspecific damaged plants. This may indicate that there is little or no ecological cost for the insect to share a plant with other insects utilising a similar resource. Insect – insect interactions were investigated in a common garden plot experiment to measure the impact that pairwise combinations of the insect may have on their performance. There was a significant interaction between the mirid E. catarinensis and the weevil N. eichhorniae, with the weevil not performing as well when in combination with the mirid than when alone. Interestingly there was a negative interaction between the two weevil species when in combination, however it was impossible to determine which species was being affected if not both. None of the insects performed significantly better when in combination with another insect. A field study on Wriggleswade Dam in the Eastern Cape, South Africa was initiated to determine whether the relationship between the mirid E. catarinensis and the weevil N. eichhorniae could be determined in the field. The performance of the insects at the different sites in the field suggests that there was an interaction between the agents. This interaction did not limit the establishment of either insect at a site, but it did result in one insect dominating at a site over another. Interactions between the three species of insect tested in this thesis suggest that there are both negative and neutral relationships between them. A basic comparison between the insect performances from 15 sites around the country was done to determine if the spatial segregation observed in the field could be extrapolated to the natural South African situation. The interaction observed between N. eichhorniae and E. catarinensis does seem to extrapolate to the general South African situation where there is definite spatial segregation on a landscape level. The co–occurrence of the two Neochetina weevils at these sites suggests that the negative relationship observed between them in the common garden experiment does not extrapolate to the field. The results from this thesis suggest that the interactions between the agents tested would not limit establishment or have significant ramifications on performance. However, there may be spatial and temporal segregation of these species in the introduced range.
- Full Text:
Quantification of the cross-sectoral impacts of waterweeds and their control in Ghana
- Authors: Akpabey, Felix Jerry
- Date: 2012
- Subjects: Water hyacinth -- Control -- Environmental aspects -- Ghana Alien plants -- Research -- Ghana Introduced organisms Economic development -- Social aspects -- Research -- Ghana
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:5748 , http://hdl.handle.net/10962/d1005435
- Description: The Akosombo Dam on the Volta River in Ghana was built in 1963 to provide cheap energy to fuel industry and to accelerate the economic growth of the country. It provides hydroelectric power, enhanced fishing and water transportation upstream, and improved opportunities for irrigated farming, especially in the lower reaches, and their attendant economic multiplier effects. A few years after the construction of this major dam, a rapid expansion of industrialization took place in Ghana. This brought about an exponential increase in demand for more electrical power. This led to the construction of a smaller dam at Akuse, downstream of the Akosomho Dam in 1981 and the formation of a headpond at Kpong. The impoundment of the river at the two sites (Akosombo and Kpong) caused an alteration in the existing ecological and biophysical processes in the river basin, including a slowing of the flow of the river, upstream and downstream. Changes in the natural processes, such as a reduction in the flow of the river and an increase in nutrient status of the water, resulted in an invasion of aquatic weeds, increasing the density of aquatic snails (intermediate hosts of schistosomiasis), silting and closure of the estuary, as well as other more subtle effects. The invasion of the river's main course and the dams by aquatic plants led to a corresponding reduction of navigable water both upstream and downstream. The aim of this thesis was to quantify the impact and control of waterweeds, especially water hyacinth, Eichhornia crassipes (Mart) Solms-Laubach (Pontederiaceae), in Ghana. A floral survey on the Kpong Headpond recorded 49 emergent, 12 free floating and I submerged aquatic plant species, many of which were indigenous, but the exotic or introduced water hyacinth was recorded at most of the sampling sites, and was the most abundant and had the biggest impact on the utilization of the water resource. Mats of water hyacinth served as substrates for other, indigenous species to grow out into the main channel of the headpond, including the intake point of the Kpong head works of the Ghana Water Company Limited (GWCL) and landing sites for boats. These mats resulted in a reduction of the fish (fin and shell) harvest, reducing the annual production to far below demand. Water hyacinth was also shown to have severe health implications. A survey of the Ministry of Health records showed that the prevalence of both urinary and intestinal schistosomiasis had risen significantly over time as the abundance of waterweeds, most notably water hyacinth, increased, and ranged between 70% and 75% but up to 100% in some lakeside communities. Based on the work done by an NGO on board the medical boat ("Onipa Nua "), losses in terms of money due to the effect on health of the aquatic weed infestations on the Volta River in 2006 amounted to US$ 620,000. Economic losses due to invasive alien aquatic weeds were also calculated on the Oti River Arm of Lake Volta. It was estimated that about US$2.3 million per annum would be lost to the Volta Lake Transport Company and individual boat transport operators if this section of the river were 100% covered by aquatic weeds (water hyacinth and Salvinia molesta D.S. Mitchell (Salviniaceae)). It was also estimated that US$327,038 was spent annually in monitoring and managing the weeds in the Oti River. Control interventions for aquatic weeds have been implemented in river systems in Ghana. The biological control agents Neochetina bruchi Hustache (Coleoptera, Curculionidae) and Neochetina eichhorniae Warner (Coleoptera, Curculionidae) have been used on water hyacinth infestations in the Oti River Arm of Lake Volta, the Tano River and the Lagoon complex in the south-western part of the country. Cyrtobagous salviniae Calder and Sands (Coleoptera: Curculionidae) has been used to control salvinia, and Neohydronomous affinis Hustache (Coleoptera: Curculionidae) to control water lettuce, Pistia stratiotes Lilmaeus (Araceae) in the Tano River and Lagoon complex. Although these projects have been regarded as successful, they have relied on research from elsewhere in the world and no postrelease quantification has been conducted. In evaluating the impact of the biological control agents Neochetina bruchi and Neochetina eichhorniae weevils on water hyacinth infestations in the Tano River, fresh adult feeding scars were recorded as well as the numbers of adult weevils on each water hyacinth plant sampled at six sites. Despite being released in 1994, weevil numbers and resultant damage to plants in the Tano Lagoon was low in comparison to other regions of the world where these agents have been used. The main reason for this is that this lagoon floods seasonally, washing weevil-infested plants out to sea. Water hyacinth then re-infests the lagoon from seed and the weevil populations are low. To resolve this situation, two courses of action are proposed. The first is to mass rear the weevils along the shore of the lagoon and release them when the first seedlings recruit. The second proposal is that additional agents that have shorter lifecycies and are more mobile than the weevils should be released. To this end, the water hyacinth mirid, Eccritotarsus catarinensis (Carvalho) (Hemiptera: Miridae) was imported from South Africa and released onto the Tano Lagoon in 2009. Retrospective laboratory host specificity trials were conducted on Neachetina eichharniae and Neachetina bruchi weevils 15 years after their release into Ghana to see if any variation in their host ranges had occurred. Considerable damage was inflicted on the E. crassipes leaves by the Neachetina weevils, while little feeding damage was recorded on both Heteranthera callifalia Kunth. (Pontederiaceae) and Eichharnia natans (P.Beauv.) Solms (Pontederiaceae). All the weevils introduced on H callifalia and E. natans died after the first week. This study served to confirm the host specificity and thereby the safety of these agents. Invasive alien aquatic macrophytes have negative impacts on the environment and economy of Ghana. The control of these weeds is essential to socioeconomic development and improved human health standards in riparian communities. Biological control offers a safe and sustainable control option, but requires diligent implementation. However, aquatic weed invasion is more typically a result of the anthropogenically induced eutrophication of water bodies, and this is the main issue that has to be addressed.
- Full Text:
- Authors: Akpabey, Felix Jerry
- Date: 2012
- Subjects: Water hyacinth -- Control -- Environmental aspects -- Ghana Alien plants -- Research -- Ghana Introduced organisms Economic development -- Social aspects -- Research -- Ghana
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:5748 , http://hdl.handle.net/10962/d1005435
- Description: The Akosombo Dam on the Volta River in Ghana was built in 1963 to provide cheap energy to fuel industry and to accelerate the economic growth of the country. It provides hydroelectric power, enhanced fishing and water transportation upstream, and improved opportunities for irrigated farming, especially in the lower reaches, and their attendant economic multiplier effects. A few years after the construction of this major dam, a rapid expansion of industrialization took place in Ghana. This brought about an exponential increase in demand for more electrical power. This led to the construction of a smaller dam at Akuse, downstream of the Akosomho Dam in 1981 and the formation of a headpond at Kpong. The impoundment of the river at the two sites (Akosombo and Kpong) caused an alteration in the existing ecological and biophysical processes in the river basin, including a slowing of the flow of the river, upstream and downstream. Changes in the natural processes, such as a reduction in the flow of the river and an increase in nutrient status of the water, resulted in an invasion of aquatic weeds, increasing the density of aquatic snails (intermediate hosts of schistosomiasis), silting and closure of the estuary, as well as other more subtle effects. The invasion of the river's main course and the dams by aquatic plants led to a corresponding reduction of navigable water both upstream and downstream. The aim of this thesis was to quantify the impact and control of waterweeds, especially water hyacinth, Eichhornia crassipes (Mart) Solms-Laubach (Pontederiaceae), in Ghana. A floral survey on the Kpong Headpond recorded 49 emergent, 12 free floating and I submerged aquatic plant species, many of which were indigenous, but the exotic or introduced water hyacinth was recorded at most of the sampling sites, and was the most abundant and had the biggest impact on the utilization of the water resource. Mats of water hyacinth served as substrates for other, indigenous species to grow out into the main channel of the headpond, including the intake point of the Kpong head works of the Ghana Water Company Limited (GWCL) and landing sites for boats. These mats resulted in a reduction of the fish (fin and shell) harvest, reducing the annual production to far below demand. Water hyacinth was also shown to have severe health implications. A survey of the Ministry of Health records showed that the prevalence of both urinary and intestinal schistosomiasis had risen significantly over time as the abundance of waterweeds, most notably water hyacinth, increased, and ranged between 70% and 75% but up to 100% in some lakeside communities. Based on the work done by an NGO on board the medical boat ("Onipa Nua "), losses in terms of money due to the effect on health of the aquatic weed infestations on the Volta River in 2006 amounted to US$ 620,000. Economic losses due to invasive alien aquatic weeds were also calculated on the Oti River Arm of Lake Volta. It was estimated that about US$2.3 million per annum would be lost to the Volta Lake Transport Company and individual boat transport operators if this section of the river were 100% covered by aquatic weeds (water hyacinth and Salvinia molesta D.S. Mitchell (Salviniaceae)). It was also estimated that US$327,038 was spent annually in monitoring and managing the weeds in the Oti River. Control interventions for aquatic weeds have been implemented in river systems in Ghana. The biological control agents Neochetina bruchi Hustache (Coleoptera, Curculionidae) and Neochetina eichhorniae Warner (Coleoptera, Curculionidae) have been used on water hyacinth infestations in the Oti River Arm of Lake Volta, the Tano River and the Lagoon complex in the south-western part of the country. Cyrtobagous salviniae Calder and Sands (Coleoptera: Curculionidae) has been used to control salvinia, and Neohydronomous affinis Hustache (Coleoptera: Curculionidae) to control water lettuce, Pistia stratiotes Lilmaeus (Araceae) in the Tano River and Lagoon complex. Although these projects have been regarded as successful, they have relied on research from elsewhere in the world and no postrelease quantification has been conducted. In evaluating the impact of the biological control agents Neochetina bruchi and Neochetina eichhorniae weevils on water hyacinth infestations in the Tano River, fresh adult feeding scars were recorded as well as the numbers of adult weevils on each water hyacinth plant sampled at six sites. Despite being released in 1994, weevil numbers and resultant damage to plants in the Tano Lagoon was low in comparison to other regions of the world where these agents have been used. The main reason for this is that this lagoon floods seasonally, washing weevil-infested plants out to sea. Water hyacinth then re-infests the lagoon from seed and the weevil populations are low. To resolve this situation, two courses of action are proposed. The first is to mass rear the weevils along the shore of the lagoon and release them when the first seedlings recruit. The second proposal is that additional agents that have shorter lifecycies and are more mobile than the weevils should be released. To this end, the water hyacinth mirid, Eccritotarsus catarinensis (Carvalho) (Hemiptera: Miridae) was imported from South Africa and released onto the Tano Lagoon in 2009. Retrospective laboratory host specificity trials were conducted on Neachetina eichharniae and Neachetina bruchi weevils 15 years after their release into Ghana to see if any variation in their host ranges had occurred. Considerable damage was inflicted on the E. crassipes leaves by the Neachetina weevils, while little feeding damage was recorded on both Heteranthera callifalia Kunth. (Pontederiaceae) and Eichharnia natans (P.Beauv.) Solms (Pontederiaceae). All the weevils introduced on H callifalia and E. natans died after the first week. This study served to confirm the host specificity and thereby the safety of these agents. Invasive alien aquatic macrophytes have negative impacts on the environment and economy of Ghana. The control of these weeds is essential to socioeconomic development and improved human health standards in riparian communities. Biological control offers a safe and sustainable control option, but requires diligent implementation. However, aquatic weed invasion is more typically a result of the anthropogenically induced eutrophication of water bodies, and this is the main issue that has to be addressed.
- Full Text:
Studies on existing and new isolates of Cryptophlebia leucotreta granulovirus (CrleGV) on Thaumatotibia leucotreta populations from a range of geographic regions in South Africa
- Authors: Opoku-Debrah, John Kwadwo
- Date: 2012
- Subjects: Cryptophlebia leucotreta Cryptophlebia leucotreta -- South Africa Cryptophlebia leucotreta -- Biological control Cryptophlebia leucotreta -- Life cycles Baculoviruses Lepidoptera -- Biological control Tortricidae -- Biological control Microbial insecticides Pests -- Integrated control
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:5778 , http://hdl.handle.net/10962/d1005466
- Description: Baculoviruses are arthropod-specific DNA viruses that are highly virulent to most lepidopteran insects. Their host specificity and compatibility with IPM programmes has enabled their usage as safe microbial insecticides (biopesticides). Two baculovirus-based biopesticides, Cryptogran and Cryptex, which have been formulated with Cryptophlebia leucotreta granulovirus (CrleGV) have been registered for the control of false codling moth (FCM), Thaumatotibia (=Cryptophlebia) leucotreta (Meyrick) (Lepidoptera: Tortricidae) in South Africa and have been successfully incorporated into IPM programmes. However, several studies have indicated that insects can develop resistance to baculovirus-based biopesticide as was shown with field populations of codling moth (CM), Cydia pomonella (L.), which developed resistance to the biopesticide Cydia pomonella granulovirus (CpGV-M) in Europe. Other studies have shown that, under laboratory conditions, FCM populations differ in their susceptibility to Cryptogran and Cryptex. In order to investigate difference in susceptibility as well as protect against any future resistance by FCM to Cryptogran and Cryptex, a search for novel CrleGV-SA isolates from diseased insects from different geographic regions in South Africa was performed. Six geographic populations (Addo, Citrusdal, Marble Hall, Nelspruit, Baths and Mixed colonies) of FCM were established and maintained in the laboratory. Studies on the comparative biological performance based on pupal mass, female fecundity, egg hatch, pupal survival, adult eclosion and duration of life cycle of the Addo, Citrusdal, Marble Hall, Nelspruit and Mixed colonies revealed a low biological performance for the Citrusdal colony. This was attributed to the fact that FCM populations found in the Citrusdal area are not indigenous and may have been introduced from a very limited gene pool from another region. When insects from five colonies, excluding the Baths colony, were subjected to stress by overcrowding , a latent baculovirus resident in the Addo, Nelspruit, Citrusdal, Marble Hall and Mixed colonies was brought into an overt lethal state. Transmission electron micrographs revealed the presence of GV occlusion bodies (OBs) in diseased insects. DNA profiles obtained by single restriction endonuclease analysis of viral genomic DNA using BamH 1, Sa/1, Xba1 , Pst1, Xh01 , Kpn1, Hindlll and EcoR1 revealed five CrleGV-SA isolates latent within the insect populations. The new isolates were named CrleGV-SA Ado, CrleGV-SA Cit, CrleGV-SA Mbl, CrleGVSA Nels and CrleGV-SA Mix isolates. The novelty of the five CrleGV-SA isolates was confirmed by the presence of unique submolar bands, indicating that each isolate was genetically different. PCR amplification and sequencing of the granulin and egt genes from the five isolates revealed several single nucleotide polymorph isms (SNPs) which, in some cases, resulted in amino acid substitutions. DNA profiles from RFLPs, as well as phylogenetic analysis based on granulin and egt sequencing showed the presence of two CrleGV-SA genome types for the CrleGV-SA isolate. Cryptex and CrleGV-SA Ado, CrleGV-SA Cit, CrleGV-SA Mbl and CrleGV-SA Mix were placed as members of Group one CrleGV-SA, and Cryptogran and CrleGV-SA Nels isolate were placed into Group two CrleGV-SA. In droplet feeding bioassays, the median survival time (STso) for neonate larvae inoculated with Group one and two CrleGV-SA were determined to range from 80 - 88 hours (3.33 - 3.67 days), for all five colonies. LDso values for Group one and two CrleGV-SA against neonates from the Addo, Citrusdal, Marble Hall, Nelspruit and Mixed colonies varied between some populations and ranged from 0.80 - 3.12 OBs per larva, indicating some level of variation in host susceptibility. This is the first study reporting the existence of genetically distinct CrleGV baculovirus isolates infecting FCM in different geographical areas of South Africa. The results of this study have broad-ranging implications for our understanding of baculovirus-host interactions and for the application of baculovirus basedbiopesticides.
- Full Text:
- Authors: Opoku-Debrah, John Kwadwo
- Date: 2012
- Subjects: Cryptophlebia leucotreta Cryptophlebia leucotreta -- South Africa Cryptophlebia leucotreta -- Biological control Cryptophlebia leucotreta -- Life cycles Baculoviruses Lepidoptera -- Biological control Tortricidae -- Biological control Microbial insecticides Pests -- Integrated control
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:5778 , http://hdl.handle.net/10962/d1005466
- Description: Baculoviruses are arthropod-specific DNA viruses that are highly virulent to most lepidopteran insects. Their host specificity and compatibility with IPM programmes has enabled their usage as safe microbial insecticides (biopesticides). Two baculovirus-based biopesticides, Cryptogran and Cryptex, which have been formulated with Cryptophlebia leucotreta granulovirus (CrleGV) have been registered for the control of false codling moth (FCM), Thaumatotibia (=Cryptophlebia) leucotreta (Meyrick) (Lepidoptera: Tortricidae) in South Africa and have been successfully incorporated into IPM programmes. However, several studies have indicated that insects can develop resistance to baculovirus-based biopesticide as was shown with field populations of codling moth (CM), Cydia pomonella (L.), which developed resistance to the biopesticide Cydia pomonella granulovirus (CpGV-M) in Europe. Other studies have shown that, under laboratory conditions, FCM populations differ in their susceptibility to Cryptogran and Cryptex. In order to investigate difference in susceptibility as well as protect against any future resistance by FCM to Cryptogran and Cryptex, a search for novel CrleGV-SA isolates from diseased insects from different geographic regions in South Africa was performed. Six geographic populations (Addo, Citrusdal, Marble Hall, Nelspruit, Baths and Mixed colonies) of FCM were established and maintained in the laboratory. Studies on the comparative biological performance based on pupal mass, female fecundity, egg hatch, pupal survival, adult eclosion and duration of life cycle of the Addo, Citrusdal, Marble Hall, Nelspruit and Mixed colonies revealed a low biological performance for the Citrusdal colony. This was attributed to the fact that FCM populations found in the Citrusdal area are not indigenous and may have been introduced from a very limited gene pool from another region. When insects from five colonies, excluding the Baths colony, were subjected to stress by overcrowding , a latent baculovirus resident in the Addo, Nelspruit, Citrusdal, Marble Hall and Mixed colonies was brought into an overt lethal state. Transmission electron micrographs revealed the presence of GV occlusion bodies (OBs) in diseased insects. DNA profiles obtained by single restriction endonuclease analysis of viral genomic DNA using BamH 1, Sa/1, Xba1 , Pst1, Xh01 , Kpn1, Hindlll and EcoR1 revealed five CrleGV-SA isolates latent within the insect populations. The new isolates were named CrleGV-SA Ado, CrleGV-SA Cit, CrleGV-SA Mbl, CrleGVSA Nels and CrleGV-SA Mix isolates. The novelty of the five CrleGV-SA isolates was confirmed by the presence of unique submolar bands, indicating that each isolate was genetically different. PCR amplification and sequencing of the granulin and egt genes from the five isolates revealed several single nucleotide polymorph isms (SNPs) which, in some cases, resulted in amino acid substitutions. DNA profiles from RFLPs, as well as phylogenetic analysis based on granulin and egt sequencing showed the presence of two CrleGV-SA genome types for the CrleGV-SA isolate. Cryptex and CrleGV-SA Ado, CrleGV-SA Cit, CrleGV-SA Mbl and CrleGV-SA Mix were placed as members of Group one CrleGV-SA, and Cryptogran and CrleGV-SA Nels isolate were placed into Group two CrleGV-SA. In droplet feeding bioassays, the median survival time (STso) for neonate larvae inoculated with Group one and two CrleGV-SA were determined to range from 80 - 88 hours (3.33 - 3.67 days), for all five colonies. LDso values for Group one and two CrleGV-SA against neonates from the Addo, Citrusdal, Marble Hall, Nelspruit and Mixed colonies varied between some populations and ranged from 0.80 - 3.12 OBs per larva, indicating some level of variation in host susceptibility. This is the first study reporting the existence of genetically distinct CrleGV baculovirus isolates infecting FCM in different geographical areas of South Africa. The results of this study have broad-ranging implications for our understanding of baculovirus-host interactions and for the application of baculovirus basedbiopesticides.
- Full Text:
Development of techniques for the isolation of a granulovirus from potato tuber moth, phthorimaea operculella (Zeller)
- Authors: King, Shirley Anne
- Date: 2011
- Subjects: Potato tuberworm -- Larvae , Agricultural pests -- Biological control , Potato tuberworm , Baculoviruses
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5910 , http://hdl.handle.net/10962/d1015202
- Description: Phthorimaea operculella, commonly known as the Potato Tuber Moth, is an economically important agricultural pest worldwide. The baculovirus, Phthorimaea operculella granulovirus (PhoGV) has been considered as a means of control alternative to chemical control because of its host specificity and harmless impact on other organisms and ecosystems. An isolate of PhoGV obtained from a South African PTM population would be beneficial in the production of a biopesticide, which is not yet available. An efficient and cost-effective rearing method would be advantageous for potential commercial production. Commercial table and seed potato plantations and storage facilities located in Patensie, Bathurst, Howick and Ivanhoe were surveyed for PTM infestations. Patensie was the only site where milky discoloured larvae were found, a potential symptom of PhoGV infection. TEM analysis revealed no virus in these samples. Since no virus was found in the field-collected samples, PTM insects were collected to initiate rearing in the laboratory. PTM was raised by three different methods in the laboratory. A cost/benefit analysis, survival rate, fertility and sex ratio were recorded for each rearing method. Rearing method one was deemed unsuccessful for efficient commercial rearing, as survival percentage and fertility were low. Rearing methods two and three had high survival rates and high fertility, and were efficient and less labour intensive than rearing method one. Rearing method three was the most productive technique, but for commercial production rearing method two was considered the most manageable and efficient. The sex ratio was 1:1 for all three cultures. The cost analysis revealed that rearing methods two and three were less expensive than rearing method one because less labour was required to monitor insects. The success of rearing PTM for 19 months will enable these cultures to be up-scaled to a large production facility for mass rearing. Virus was not found in the field surveys or in laboratory cultures, therefore chemical, temperature, humidity and carbon dioxide stressors were used in an attempt to initiate a baculoviral infection. Symptoms were exhibited in larvae subjected to chemical, temperature and humidity treatments, but these were confirmed by TEM analysis not to be a result of PhoGV infection. The success of rearing PTM in the laboratory suggests that the method could be used in the commercial rearing of the insects in a large mass-rearing facility. The data obtained from induction protocols have allowed for better understanding for future induction for PhoGV and other baculoviruses in other insect species. The failure to isolate a South African PhoGV strain for developing a biopesticide against PTM has motivated further studies in obtaining a baculovirus in order for South Africa to develop a commercial product against this pest.
- Full Text:
- Authors: King, Shirley Anne
- Date: 2011
- Subjects: Potato tuberworm -- Larvae , Agricultural pests -- Biological control , Potato tuberworm , Baculoviruses
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5910 , http://hdl.handle.net/10962/d1015202
- Description: Phthorimaea operculella, commonly known as the Potato Tuber Moth, is an economically important agricultural pest worldwide. The baculovirus, Phthorimaea operculella granulovirus (PhoGV) has been considered as a means of control alternative to chemical control because of its host specificity and harmless impact on other organisms and ecosystems. An isolate of PhoGV obtained from a South African PTM population would be beneficial in the production of a biopesticide, which is not yet available. An efficient and cost-effective rearing method would be advantageous for potential commercial production. Commercial table and seed potato plantations and storage facilities located in Patensie, Bathurst, Howick and Ivanhoe were surveyed for PTM infestations. Patensie was the only site where milky discoloured larvae were found, a potential symptom of PhoGV infection. TEM analysis revealed no virus in these samples. Since no virus was found in the field-collected samples, PTM insects were collected to initiate rearing in the laboratory. PTM was raised by three different methods in the laboratory. A cost/benefit analysis, survival rate, fertility and sex ratio were recorded for each rearing method. Rearing method one was deemed unsuccessful for efficient commercial rearing, as survival percentage and fertility were low. Rearing methods two and three had high survival rates and high fertility, and were efficient and less labour intensive than rearing method one. Rearing method three was the most productive technique, but for commercial production rearing method two was considered the most manageable and efficient. The sex ratio was 1:1 for all three cultures. The cost analysis revealed that rearing methods two and three were less expensive than rearing method one because less labour was required to monitor insects. The success of rearing PTM for 19 months will enable these cultures to be up-scaled to a large production facility for mass rearing. Virus was not found in the field surveys or in laboratory cultures, therefore chemical, temperature, humidity and carbon dioxide stressors were used in an attempt to initiate a baculoviral infection. Symptoms were exhibited in larvae subjected to chemical, temperature and humidity treatments, but these were confirmed by TEM analysis not to be a result of PhoGV infection. The success of rearing PTM in the laboratory suggests that the method could be used in the commercial rearing of the insects in a large mass-rearing facility. The data obtained from induction protocols have allowed for better understanding for future induction for PhoGV and other baculoviruses in other insect species. The failure to isolate a South African PhoGV strain for developing a biopesticide against PTM has motivated further studies in obtaining a baculovirus in order for South Africa to develop a commercial product against this pest.
- Full Text:
The impact on biodiversity, and integrated control, of water hyacinth, Eichhornia crassipes (Martius) Solms-Laubach (Pontederiaceae) on the Lake Nsezi - Nseleni River system
- Authors: Jones, Roy William
- Date: 2009
- Subjects: Water hyacinth -- Control -- South Africa , Eichhornia crassipedes , Pontederiaceae , Aquatic plants -- South Africa -- Nsezi, Lake , Aquatic weeds -- South Africa -- Nsezi, Lake , Invasive plants -- South Africa -- Nsezi, Lake
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5711 , http://hdl.handle.net/10962/d1005397 , Water hyacinth -- Control -- South Africa , Eichhornia crassipedes , Pontederiaceae , Aquatic plants -- South Africa -- Nsezi, Lake , Aquatic weeds -- South Africa -- Nsezi, Lake , Invasive plants -- South Africa -- Nsezi, Lake
- Description: Water hyacinth, Eichhornia crassipes (Martius) Solms-Laubach (Pontederiaceae), a free floating aquatic plant was discovered by C. von Martius in 1823 in Brazil. It is believed to have been introduced into South Africa, as an ornamental plant, in 1908 to the Cape Province and Natal. Since its introduction, water hyacinth has spread throughout South Africa to the detriment of all aquatic systems that it has been introduced to directly or indirectly. The weed was first positively identified on the Nseleni and Mposa rivers on the Nseleni Nature Reserve which is a protected area near Richards Bay in KwaZulu- Natal in 1982 and formed a 100% cover of the river by 1983. An integrated management plan was implemented in 1995 and resulted in a reduction of the weed from a 100% cover to less than 20% cover in 5 years. The keys to success of the water hyacinth integrated management plan, presented here, were finding the source of the weed, mapping the extent of the water hyacinth infestation, identifying sources of nutrient pollution, appointing a champion to drive the programme, dividing the river into management units, consultation with interested and affected parties, judicious use of herbicides and biological control and a commitment to follow-up. This study further showed that water hyacinth on the Nseleni and Mposa river systems had a negative impact on the biodiversity of the protected area and the control of water hyacinth resulted in the recovery of the benthic invertebrate, amphibian, reptile, fish and avian fauna. The implementation of this integrated management plan was very cost-effective and serves as a model approach to the control of water hyacinth in both South Africa and the rest of the world.
- Full Text:
- Authors: Jones, Roy William
- Date: 2009
- Subjects: Water hyacinth -- Control -- South Africa , Eichhornia crassipedes , Pontederiaceae , Aquatic plants -- South Africa -- Nsezi, Lake , Aquatic weeds -- South Africa -- Nsezi, Lake , Invasive plants -- South Africa -- Nsezi, Lake
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5711 , http://hdl.handle.net/10962/d1005397 , Water hyacinth -- Control -- South Africa , Eichhornia crassipedes , Pontederiaceae , Aquatic plants -- South Africa -- Nsezi, Lake , Aquatic weeds -- South Africa -- Nsezi, Lake , Invasive plants -- South Africa -- Nsezi, Lake
- Description: Water hyacinth, Eichhornia crassipes (Martius) Solms-Laubach (Pontederiaceae), a free floating aquatic plant was discovered by C. von Martius in 1823 in Brazil. It is believed to have been introduced into South Africa, as an ornamental plant, in 1908 to the Cape Province and Natal. Since its introduction, water hyacinth has spread throughout South Africa to the detriment of all aquatic systems that it has been introduced to directly or indirectly. The weed was first positively identified on the Nseleni and Mposa rivers on the Nseleni Nature Reserve which is a protected area near Richards Bay in KwaZulu- Natal in 1982 and formed a 100% cover of the river by 1983. An integrated management plan was implemented in 1995 and resulted in a reduction of the weed from a 100% cover to less than 20% cover in 5 years. The keys to success of the water hyacinth integrated management plan, presented here, were finding the source of the weed, mapping the extent of the water hyacinth infestation, identifying sources of nutrient pollution, appointing a champion to drive the programme, dividing the river into management units, consultation with interested and affected parties, judicious use of herbicides and biological control and a commitment to follow-up. This study further showed that water hyacinth on the Nseleni and Mposa river systems had a negative impact on the biodiversity of the protected area and the control of water hyacinth resulted in the recovery of the benthic invertebrate, amphibian, reptile, fish and avian fauna. The implementation of this integrated management plan was very cost-effective and serves as a model approach to the control of water hyacinth in both South Africa and the rest of the world.
- Full Text:
Willingness to pay for the control of water hyacinth in an urban environment of South Africa
- Authors: Law, Matthew Charles
- Date: 2008
- Subjects: Water hyacinth -- Control -- South Africa , Urban ecology (Sociology) -- South Africa , Biodiversity -- Economic aspects -- South Africa , Biodiversity conservation -- Economic aspects -- South Africa , Biological invasions -- Economic aspects -- South Africa , Biological invasions -- Environmental aspects -- South Africa
- Language: English
- Type: Thesis , Masters , MCom
- Identifier: vital:996 , http://hdl.handle.net/10962/d1002731 , Water hyacinth -- Control -- South Africa , Urban ecology (Sociology) -- South Africa , Biodiversity -- Economic aspects -- South Africa , Biodiversity conservation -- Economic aspects -- South Africa , Biological invasions -- Economic aspects -- South Africa , Biological invasions -- Environmental aspects -- South Africa
- Description: Water hyacinth is recognised as one of the most problematic invasive aquatic plant species in Africa. For this reason considerable funds are spent each year on itscontrol. As a consequence of the amount of money being spent on problems such as the invasion of water hyacinth, and because of the recognition of the ongoing and accelerated efforts that are required in the future, recent research has focused on accurately quantifying the costs and benefits of control of invasive species to aid policy decisions.A comprehensive cost-benefit analysis would be able to identify if the funds are justified and are being spent effectively. This thesis provides an example of a cost-benefit analysis of funds spent on the control of water hyacinth in an urban environment in South Africa. In order to develop a comprehensive assessment of the total economic value of the control of water hyacinth to an urban population, the Nahoon River in East London was selected as the study site to calculate the benefits of control. In addition to valuing the direct services provided by the resources that are traded in the market (in this case water provision), a contingent valuation study was undertaken in Abbottsford and Dorchester Heights (two suburbs in East London banking the Nahoon River). These were done in order to assess any non-use value a sample of 132 households of the population has for the control of water hyacinth, and any use values that are not traded in the market, for example recreational value. When the benefits of control of water hyacinth were compared to the costs of one of the least cost effective methods of control (herbicidal control), the benefits outweighed the costs by a ratio of more than 4:1, and for the most cost effective method of control the ratio was almost 6:1. These results provide a justification for the funds that are devoted to the control of water hyacinth, providing an argument for the continued expenditure for its control, and for further research into more cost effective methods of control, such as biological control.
- Full Text:
- Authors: Law, Matthew Charles
- Date: 2008
- Subjects: Water hyacinth -- Control -- South Africa , Urban ecology (Sociology) -- South Africa , Biodiversity -- Economic aspects -- South Africa , Biodiversity conservation -- Economic aspects -- South Africa , Biological invasions -- Economic aspects -- South Africa , Biological invasions -- Environmental aspects -- South Africa
- Language: English
- Type: Thesis , Masters , MCom
- Identifier: vital:996 , http://hdl.handle.net/10962/d1002731 , Water hyacinth -- Control -- South Africa , Urban ecology (Sociology) -- South Africa , Biodiversity -- Economic aspects -- South Africa , Biodiversity conservation -- Economic aspects -- South Africa , Biological invasions -- Economic aspects -- South Africa , Biological invasions -- Environmental aspects -- South Africa
- Description: Water hyacinth is recognised as one of the most problematic invasive aquatic plant species in Africa. For this reason considerable funds are spent each year on itscontrol. As a consequence of the amount of money being spent on problems such as the invasion of water hyacinth, and because of the recognition of the ongoing and accelerated efforts that are required in the future, recent research has focused on accurately quantifying the costs and benefits of control of invasive species to aid policy decisions.A comprehensive cost-benefit analysis would be able to identify if the funds are justified and are being spent effectively. This thesis provides an example of a cost-benefit analysis of funds spent on the control of water hyacinth in an urban environment in South Africa. In order to develop a comprehensive assessment of the total economic value of the control of water hyacinth to an urban population, the Nahoon River in East London was selected as the study site to calculate the benefits of control. In addition to valuing the direct services provided by the resources that are traded in the market (in this case water provision), a contingent valuation study was undertaken in Abbottsford and Dorchester Heights (two suburbs in East London banking the Nahoon River). These were done in order to assess any non-use value a sample of 132 households of the population has for the control of water hyacinth, and any use values that are not traded in the market, for example recreational value. When the benefits of control of water hyacinth were compared to the costs of one of the least cost effective methods of control (herbicidal control), the benefits outweighed the costs by a ratio of more than 4:1, and for the most cost effective method of control the ratio was almost 6:1. These results provide a justification for the funds that are devoted to the control of water hyacinth, providing an argument for the continued expenditure for its control, and for further research into more cost effective methods of control, such as biological control.
- Full Text:
Management of invasive aquatic weeds with emphasis on biological control in Senegal
- Authors: Diop, Ousseynou
- Date: 2007
- Subjects: Aquatic weeds -- Biological control -- Senegal Invasive plants -- Biological control -- Senegal Aquatic plants -- Biological control -- Senegal
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:5728 , http://hdl.handle.net/10962/d1005414
- Description: In 1985 the Diama Dam was built near the mouth of the Senegal River to regulate flows during the rainy season and prevent the intrusion of seawater during the dry season. This created ideal conditions upstream of the dam wall for invasion by two highly invasive aquatic weeds, first by water lettuce Pistia stratiotes Linnaeus (Araceae) in 1993, and then by salvinia Salvinia molesta D.S. Mitchell (Salviniaceae) in 1999. This study was focused on the management of P. stratiotes and S. molesta. Following successes that were achieved elsewhere in the world, biological control programmes involving two weevil species were inaugurated against both weeds and research was focused on several aspects. These included pre-release studies to determine the weevils' host-specificity and impact on the plants in the laboratory, their subsequent mass-rearing and releases at selected sites and post-release evaluations on their impact on the weed populations in the field. Both programmes, which reprepresented the first biocontrol efforts against aquatic weeds in Senegal, proved highly successful with severe damage inflicted on the weed populations and complete control achieved within a relatively short time span. A laboratory exclusion experiment with N. affinis on P. stratiotes showed that in treated tubs, the weevil strongly depressed plant performance as measured by the plant growth parameters: mass, rosette diameter, root length, number of leaves and daughter plants whereas control plants were healthy. Field releases started in September 1994 and water coverage by P. stratiotes at Lake Guiers was reduced by 25% in January 1995 and 50% in April 1995. A general decline of 65% in water coverage by P. stratiotes was observed in June 1995 and by August 1995, eight months after releases P. stratiotes mats were destroyed. Further, although no releases were made there, good results were obtained within 18 months at Djoudj Park water bodies, located 150 km NW from Lake Guiers indicating the potential of the weevil to disperse long distances. In 2005, P. stratiotes reappeared and the weevil N. affinis has located and controlled all of these P. stratiotes recurrences after new releases. In 1999, S. molesta covered an estimated area of 18 000 ha on the Senegal River Left Bank and tributaries (Senegal) and 7 840 ha on the Senegal River Right Bank (Mauritania). Military and Civil Development Committee (CCMAD) and community volunteers made an effort to control S. molesta using physical removal, but this costly and labour-intensive approach was unsustainable. Hence, biological control was adopted by Senegal and Mauritania to manage the weed. Host range tests to assess feeding by C. salviniae on S. molesta and non-target plants and carried out on 13 crop species showed that no feeding damage was observed on the latter and weevils only fed on S. molesta. Field releases of some 48 953 weevils at 270 sites were made from early January 2002 to August 2002. Within one year, weevils were established and were being recovered up to 50 km from the release sites. In a case study conducted at one of the release sites, the S. molesta infestation was reduced from 100% to less than 3% 24 months after release. These results are discussed in the context of the weeds’ negative impact on aquatic systems and riverside communities, and in the involvement of these communities in the programmes.
- Full Text:
- Authors: Diop, Ousseynou
- Date: 2007
- Subjects: Aquatic weeds -- Biological control -- Senegal Invasive plants -- Biological control -- Senegal Aquatic plants -- Biological control -- Senegal
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:5728 , http://hdl.handle.net/10962/d1005414
- Description: In 1985 the Diama Dam was built near the mouth of the Senegal River to regulate flows during the rainy season and prevent the intrusion of seawater during the dry season. This created ideal conditions upstream of the dam wall for invasion by two highly invasive aquatic weeds, first by water lettuce Pistia stratiotes Linnaeus (Araceae) in 1993, and then by salvinia Salvinia molesta D.S. Mitchell (Salviniaceae) in 1999. This study was focused on the management of P. stratiotes and S. molesta. Following successes that were achieved elsewhere in the world, biological control programmes involving two weevil species were inaugurated against both weeds and research was focused on several aspects. These included pre-release studies to determine the weevils' host-specificity and impact on the plants in the laboratory, their subsequent mass-rearing and releases at selected sites and post-release evaluations on their impact on the weed populations in the field. Both programmes, which reprepresented the first biocontrol efforts against aquatic weeds in Senegal, proved highly successful with severe damage inflicted on the weed populations and complete control achieved within a relatively short time span. A laboratory exclusion experiment with N. affinis on P. stratiotes showed that in treated tubs, the weevil strongly depressed plant performance as measured by the plant growth parameters: mass, rosette diameter, root length, number of leaves and daughter plants whereas control plants were healthy. Field releases started in September 1994 and water coverage by P. stratiotes at Lake Guiers was reduced by 25% in January 1995 and 50% in April 1995. A general decline of 65% in water coverage by P. stratiotes was observed in June 1995 and by August 1995, eight months after releases P. stratiotes mats were destroyed. Further, although no releases were made there, good results were obtained within 18 months at Djoudj Park water bodies, located 150 km NW from Lake Guiers indicating the potential of the weevil to disperse long distances. In 2005, P. stratiotes reappeared and the weevil N. affinis has located and controlled all of these P. stratiotes recurrences after new releases. In 1999, S. molesta covered an estimated area of 18 000 ha on the Senegal River Left Bank and tributaries (Senegal) and 7 840 ha on the Senegal River Right Bank (Mauritania). Military and Civil Development Committee (CCMAD) and community volunteers made an effort to control S. molesta using physical removal, but this costly and labour-intensive approach was unsustainable. Hence, biological control was adopted by Senegal and Mauritania to manage the weed. Host range tests to assess feeding by C. salviniae on S. molesta and non-target plants and carried out on 13 crop species showed that no feeding damage was observed on the latter and weevils only fed on S. molesta. Field releases of some 48 953 weevils at 270 sites were made from early January 2002 to August 2002. Within one year, weevils were established and were being recovered up to 50 km from the release sites. In a case study conducted at one of the release sites, the S. molesta infestation was reduced from 100% to less than 3% 24 months after release. These results are discussed in the context of the weeds’ negative impact on aquatic systems and riverside communities, and in the involvement of these communities in the programmes.
- Full Text:
Establishment and impact of the sap-sucking mirid, Falconia intermedia (Distant) (Hemiptera: Miridae) on Lantana camara (Verbenaceae) varieties in the Eastern Cape Province, South Africa
- Heshula, Unathi-Nkosi Lelethu Peter
- Authors: Heshula, Unathi-Nkosi Lelethu Peter
- Date: 2005
- Subjects: Lantana camara -- South Africa -- Eastern Cape , Biological pest control agents -- South Africa -- Eastern Cape , Hemiptera -- South Africa -- Eastern Cape , Miridae -- South Africa -- Eastern Cape
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5832 , http://hdl.handle.net/10962/d1008085
- Description: The biological control of the weedy complex Lantana camara (L.) (Verbenaceae) has been ongoing in South Africa for over 40 years. Despite this, the weed is still not under sufficient control and continues to invade new territories in the country. The biological control programme needs to be bolstered with releases of new and potentially damaging biological control agents. A promising biological control agent endemic to Central America, Falconia intermedia (Distant) (Hemiptera: Miridae), was imported into quarantine from Jamaica in 1994. This agent was released on sites in KwaZulu-Natal and Limpopo provinces of South Africa in 1999. Even though it initially established and damaged L. camara, populations died out at most of the release sites. As varietal difference and adverse climate have been cited as the reason for non-establishment and ineffective control in L. camara biocontrol programmes worldwide, this study attempts to investigate the role that these two factors play in this weed herbivore relationship. Laboratory no-choice trials were conducted to determine the varietal performance of F intermedia, among five Eastern Cape varieties of the weed from East London, Whitney Farm, Heather Glen Farm, Port Alfred and Lyndhurst Farm, and a variety from the Plant Protection Research Institute (PPRI), Pretoria. However, there were differences in performance as the adult mirids performed better on white-pink varieties from Whitney Farm and Heather Glen Farm. To test varietal preference in field conditions, field releases of F intermedia were also made at East London, Whitney Farm, Heather Glen Farm, Port Alfred and Lyndhurst Farm. Post release evaluations were conducted monthly for two years (2002 and 2003). The insect established at East London and Whitney Farm, both of which have white-pink varieties. Insect populations quickly died out at the Lyndhurst Farm and Port Alfred sites, which have dark pink varieties. It is suggested that field conditions may have resulted in poor plant quality and led indirectly to varietal preference, and to non-establishment at these two sites. With the onset of cooler weather, populations disappeared at Heather Glen Farm. This suggested that F. intermedia was suitable for release in more subtropical areas within South Africa where climatic conditions would be suitable throughout the year. The mirid performed well at Whitney Farm, resulting in significant reduction in plant growth parameters such as height and percentage cover, and increasing the cover of other flora growing beneath L. camara plants. Finally, ways to improve the efficacy of this agent are considered in an effort towards better control of L. camara in South Africa.
- Full Text:
- Authors: Heshula, Unathi-Nkosi Lelethu Peter
- Date: 2005
- Subjects: Lantana camara -- South Africa -- Eastern Cape , Biological pest control agents -- South Africa -- Eastern Cape , Hemiptera -- South Africa -- Eastern Cape , Miridae -- South Africa -- Eastern Cape
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5832 , http://hdl.handle.net/10962/d1008085
- Description: The biological control of the weedy complex Lantana camara (L.) (Verbenaceae) has been ongoing in South Africa for over 40 years. Despite this, the weed is still not under sufficient control and continues to invade new territories in the country. The biological control programme needs to be bolstered with releases of new and potentially damaging biological control agents. A promising biological control agent endemic to Central America, Falconia intermedia (Distant) (Hemiptera: Miridae), was imported into quarantine from Jamaica in 1994. This agent was released on sites in KwaZulu-Natal and Limpopo provinces of South Africa in 1999. Even though it initially established and damaged L. camara, populations died out at most of the release sites. As varietal difference and adverse climate have been cited as the reason for non-establishment and ineffective control in L. camara biocontrol programmes worldwide, this study attempts to investigate the role that these two factors play in this weed herbivore relationship. Laboratory no-choice trials were conducted to determine the varietal performance of F intermedia, among five Eastern Cape varieties of the weed from East London, Whitney Farm, Heather Glen Farm, Port Alfred and Lyndhurst Farm, and a variety from the Plant Protection Research Institute (PPRI), Pretoria. However, there were differences in performance as the adult mirids performed better on white-pink varieties from Whitney Farm and Heather Glen Farm. To test varietal preference in field conditions, field releases of F intermedia were also made at East London, Whitney Farm, Heather Glen Farm, Port Alfred and Lyndhurst Farm. Post release evaluations were conducted monthly for two years (2002 and 2003). The insect established at East London and Whitney Farm, both of which have white-pink varieties. Insect populations quickly died out at the Lyndhurst Farm and Port Alfred sites, which have dark pink varieties. It is suggested that field conditions may have resulted in poor plant quality and led indirectly to varietal preference, and to non-establishment at these two sites. With the onset of cooler weather, populations disappeared at Heather Glen Farm. This suggested that F. intermedia was suitable for release in more subtropical areas within South Africa where climatic conditions would be suitable throughout the year. The mirid performed well at Whitney Farm, resulting in significant reduction in plant growth parameters such as height and percentage cover, and increasing the cover of other flora growing beneath L. camara plants. Finally, ways to improve the efficacy of this agent are considered in an effort towards better control of L. camara in South Africa.
- Full Text:
Geographic susceptibility of Helicoverpa armigera (Lepidoptera: Noctuidae) to insecticidal proteins in Bt-cotton in South Africa
- Van Jaarsveld, Martha Johanna
- Authors: Van Jaarsveld, Martha Johanna
- Date: 2004
- Subjects: Helicoverpa armigera , Noctuidae , Lepidoptera , Cotton -- Diseases and pests -- South Africa
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5701 , http://hdl.handle.net/10962/d1005387 , Helicoverpa armigera , Noctuidae , Lepidoptera , Cotton -- Diseases and pests -- South Africa
- Description: Helicoverpa armigera Hübner (Lepidoptera: Noctuidae) (African bollworm) is a typical noctuid with a very catholic taste in food plants and whose larvae feed on a wide range of cultivated and wild plants. It has been identified as the most polyphagous and injurious pest in South Africa. Helicoverpa armigera is also a key pest of cotton in many parts of the world. This key pest requires extensive control as it adversely effects yield and has built up resistance to synthetic pyrethroid insecticides. Cotton is an important crop produced by commercial and small-scale farmers in South Africa. The local demand for cotton has not been exceeded yet, but to satisfy a demanding market, pest control costs play an important role in cotton production. The threat of an insect pest that has already shown resistance prompted the present study to investigate the possibility of resistance to Bt-cotton. Genetically engineered or Bt-cotton was introduced commercially in 1996 in South Africa. All Bt-cotton plants contain one or more foreign genes derived from the soil-dwelling bacterium, Bacillus thuringiensis (Berliner), which produces protein crystals. These crystals were isolated and transferred into the genome of a cotton plant resulting in the plant producing it’s own protein insecticide. In 1998, Monsanto (Pty) Ltd requested research into the geographic susceptibility of H. armigera to the insecticidal proteins in Bt-cotton in SA. Laboratory reared and field sampled populations of H. armigera were exposed to a diet mixed with various baseline concentrations of the Bt-gene Cry1Ac freeze dried protein. This study also determined the performance of H. armigera and Spodoptera littoralis (Boisduval) on different Bt-cotton field cultivars containing different Cry-protein genes. Results obtained indicated a significant difference in susceptibility in two field populations of H. armigera to the Bt-protein Cry1Ac, even though the LD50,s in the 2003 season did not indicate resistance. Bt-cotton cultivar 15985 BX controlled H. armigera and S. littoralis larvae, the best followed in descending order by cultivar 15985 X, 15985 B and DP50 B. Results on H. armigera also indicated that the Cry-proteins in the plant parts of the different cultivars did not diminish as the season progressed. The Bt-cotton cultivars induced retarded growth of larvae, due to either a repellent effect or lack of feeding by larvae. Widespread adoption of Bt-cotton by South African farmers led to regional declines in bollworm populations, reduced insecticide use, and increased yields. Genetically modified crops therefore contribute to a cost effective, sustainable, productive and efficient form of agriculture, with a resultant positive impact on the environment. As the market for commercial Bt-cotton in South Africa expands, it is recommended that a monitoring programme for potential resistant genes in H. armigera should be implemented at least every 2 - 3 years. This will ensure that effective resistance management strategies are utilised. Coupled with this are the Biosafety Risks regarding the effect of new proteins expressed in transgenic plants, which require further studies.
- Full Text:
- Authors: Van Jaarsveld, Martha Johanna
- Date: 2004
- Subjects: Helicoverpa armigera , Noctuidae , Lepidoptera , Cotton -- Diseases and pests -- South Africa
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5701 , http://hdl.handle.net/10962/d1005387 , Helicoverpa armigera , Noctuidae , Lepidoptera , Cotton -- Diseases and pests -- South Africa
- Description: Helicoverpa armigera Hübner (Lepidoptera: Noctuidae) (African bollworm) is a typical noctuid with a very catholic taste in food plants and whose larvae feed on a wide range of cultivated and wild plants. It has been identified as the most polyphagous and injurious pest in South Africa. Helicoverpa armigera is also a key pest of cotton in many parts of the world. This key pest requires extensive control as it adversely effects yield and has built up resistance to synthetic pyrethroid insecticides. Cotton is an important crop produced by commercial and small-scale farmers in South Africa. The local demand for cotton has not been exceeded yet, but to satisfy a demanding market, pest control costs play an important role in cotton production. The threat of an insect pest that has already shown resistance prompted the present study to investigate the possibility of resistance to Bt-cotton. Genetically engineered or Bt-cotton was introduced commercially in 1996 in South Africa. All Bt-cotton plants contain one or more foreign genes derived from the soil-dwelling bacterium, Bacillus thuringiensis (Berliner), which produces protein crystals. These crystals were isolated and transferred into the genome of a cotton plant resulting in the plant producing it’s own protein insecticide. In 1998, Monsanto (Pty) Ltd requested research into the geographic susceptibility of H. armigera to the insecticidal proteins in Bt-cotton in SA. Laboratory reared and field sampled populations of H. armigera were exposed to a diet mixed with various baseline concentrations of the Bt-gene Cry1Ac freeze dried protein. This study also determined the performance of H. armigera and Spodoptera littoralis (Boisduval) on different Bt-cotton field cultivars containing different Cry-protein genes. Results obtained indicated a significant difference in susceptibility in two field populations of H. armigera to the Bt-protein Cry1Ac, even though the LD50,s in the 2003 season did not indicate resistance. Bt-cotton cultivar 15985 BX controlled H. armigera and S. littoralis larvae, the best followed in descending order by cultivar 15985 X, 15985 B and DP50 B. Results on H. armigera also indicated that the Cry-proteins in the plant parts of the different cultivars did not diminish as the season progressed. The Bt-cotton cultivars induced retarded growth of larvae, due to either a repellent effect or lack of feeding by larvae. Widespread adoption of Bt-cotton by South African farmers led to regional declines in bollworm populations, reduced insecticide use, and increased yields. Genetically modified crops therefore contribute to a cost effective, sustainable, productive and efficient form of agriculture, with a resultant positive impact on the environment. As the market for commercial Bt-cotton in South Africa expands, it is recommended that a monitoring programme for potential resistant genes in H. armigera should be implemented at least every 2 - 3 years. This will ensure that effective resistance management strategies are utilised. Coupled with this are the Biosafety Risks regarding the effect of new proteins expressed in transgenic plants, which require further studies.
- Full Text:
- «
- ‹
- 1
- ›
- »