Fluorescence behavior of glutathione capped CdTe@ ZnS quantum dots chemically coordinated to zinc octacarboxy phthalocyanines
- Sekhosana, Kutloano E, Antunes, Edith M, Khene, Samson M, D'Souza, Sarah, Nyokong, Tebello
- Authors: Sekhosana, Kutloano E , Antunes, Edith M , Khene, Samson M , D'Souza, Sarah , Nyokong, Tebello
- Date: 2013
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/242019 , vital:50993 , xlink:href="https://doi.org/10.1016/j.jlumin.2012.11.044"
- Description: Core–shell CdTe@ZnS quantum dots capped with glutathione (CdTe@ZnS–GSH) were covalently linked to zinc octacarboxy phthalocyanine (ZnPc(COOH)8). The conjugate was characterized by UV/Vis, infrared and X-Ray photoelectron spectroscopies as well as transmission electron and atomic force microscopies. The fluorescence quantum yields of the core CdTe capped with thioglycolic acid increased upon formation of the core-shell. Upon conjugation with ZnPc(COOH)8, the fluorescence quantum yield of CdTe@ZnS–GSH decreased due to energy transfer from the latter to the Pc. The average fluorescence lifetime of the CdTe@ZnS–GSH QD also decreased upon conjugation from 26.2 to 13.3 ns.
- Full Text:
- Authors: Sekhosana, Kutloano E , Antunes, Edith M , Khene, Samson M , D'Souza, Sarah , Nyokong, Tebello
- Date: 2013
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/242019 , vital:50993 , xlink:href="https://doi.org/10.1016/j.jlumin.2012.11.044"
- Description: Core–shell CdTe@ZnS quantum dots capped with glutathione (CdTe@ZnS–GSH) were covalently linked to zinc octacarboxy phthalocyanine (ZnPc(COOH)8). The conjugate was characterized by UV/Vis, infrared and X-Ray photoelectron spectroscopies as well as transmission electron and atomic force microscopies. The fluorescence quantum yields of the core CdTe capped with thioglycolic acid increased upon formation of the core-shell. Upon conjugation with ZnPc(COOH)8, the fluorescence quantum yield of CdTe@ZnS–GSH decreased due to energy transfer from the latter to the Pc. The average fluorescence lifetime of the CdTe@ZnS–GSH QD also decreased upon conjugation from 26.2 to 13.3 ns.
- Full Text:
The development of catalytic oxovanadium (IV)-containing microspheres for the oxidation of various organosulfur compounds
- Ogunlaja, Adeniyi S, Khene, Samson M, Antunes, Edith M, Nyokong, Tebello, Torto, Nelson, Tshentu, Zenixole R
- Authors: Ogunlaja, Adeniyi S , Khene, Samson M , Antunes, Edith M , Nyokong, Tebello , Torto, Nelson , Tshentu, Zenixole R
- Date: 2013
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/241783 , vital:50969 , xlink:href="https://doi.org/10.1016/j.apcata.2013.05.004"
- Description: The development of poly[allylSB-co-EGDMA] beads containing a tetradentate ligand was achieved via suspension polymerization. The catalyst poly[allylSB-co-EGDMA]-VO was synthesized by reacting VIVOSO4 with poly[allylSB-co-EGDMA]. XPS and EPR were used to confirm the presence of vanadium (V4+) on the beads. The synthesized catalyst (poly[allylSB-co-EGDMA]-VO) was found to have a BET surface area of 22 m2 g−1 and porosity of 135 Å, with the atomic force microscopy (AFM) showing more insight on the porous nature of the beads. Oxidation of thiophene (TH), benzothiophene (BT), dibenzothiophene (DBT) and 4,6-dimethyldibenzothiophene (4,6-DMDBT) was carried out using tert-butyl hydroperoxide (t-BuOOH) as oxidant. An overall conversion of 60%, 82%, 98% and 87% was achieved for thiophene (TH), benzothiophene (BT), dibenzothiophene (DBT) and 4,6 dimethyldibenzothiophene (4,6-DMDBT) respectively at higher (t-BuOOH) to substrate ratio and at a temperature of 40 °C. The efficient oxidation of the various organosulfur compounds presents potential for the possible application of this catalyst in oxidative desulfurization (ODS) of crude oil.
- Full Text:
- Authors: Ogunlaja, Adeniyi S , Khene, Samson M , Antunes, Edith M , Nyokong, Tebello , Torto, Nelson , Tshentu, Zenixole R
- Date: 2013
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/241783 , vital:50969 , xlink:href="https://doi.org/10.1016/j.apcata.2013.05.004"
- Description: The development of poly[allylSB-co-EGDMA] beads containing a tetradentate ligand was achieved via suspension polymerization. The catalyst poly[allylSB-co-EGDMA]-VO was synthesized by reacting VIVOSO4 with poly[allylSB-co-EGDMA]. XPS and EPR were used to confirm the presence of vanadium (V4+) on the beads. The synthesized catalyst (poly[allylSB-co-EGDMA]-VO) was found to have a BET surface area of 22 m2 g−1 and porosity of 135 Å, with the atomic force microscopy (AFM) showing more insight on the porous nature of the beads. Oxidation of thiophene (TH), benzothiophene (BT), dibenzothiophene (DBT) and 4,6-dimethyldibenzothiophene (4,6-DMDBT) was carried out using tert-butyl hydroperoxide (t-BuOOH) as oxidant. An overall conversion of 60%, 82%, 98% and 87% was achieved for thiophene (TH), benzothiophene (BT), dibenzothiophene (DBT) and 4,6 dimethyldibenzothiophene (4,6-DMDBT) respectively at higher (t-BuOOH) to substrate ratio and at a temperature of 40 °C. The efficient oxidation of the various organosulfur compounds presents potential for the possible application of this catalyst in oxidative desulfurization (ODS) of crude oil.
- Full Text:
Photooxidation of 4-chlorophenol sensitized by lutetium tetraphenoxy phthalocyanine anchored on electrospun polystyrene polymer fiber
- Zugle, Ruphino, Antunes, Edith M, Khene, Samson M, Nyokong, Tebello
- Authors: Zugle, Ruphino , Antunes, Edith M , Khene, Samson M , Nyokong, Tebello
- Date: 2012
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/245787 , vital:51405 , xlink:href="https://doi.org/10.1016/j.poly.2011.11.005"
- Description: An electrospun polystyrene (PS) fiber incorporating tetraphenoxy phthalocyanine complex of lutetium (LuTPPc/PS) as a photosensitizer was applied for the degradation of 4-chlorophenol in aqueous solution in the presence of visible light. The photocatalytic activity of the LuTPPc in the fiber was compared to that of zinc phthalocyanine (ZnPc) incorporated into the PS fiber, and the former showed higher activity. UV–Vis spectral changes of sample solutions indicated transformation of the analyte with first order kinetics and half-lives that are within one and half hours for LuTPPc/PS. Products identified from the spectral changes and gas chromatography were benzoquinone, hydroquinone and 4,4′-dihydroxydiphenol suggesting that the photodegradation of 4-chlorophenol was through both Types I and II mechanisms.
- Full Text:
- Authors: Zugle, Ruphino , Antunes, Edith M , Khene, Samson M , Nyokong, Tebello
- Date: 2012
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/245787 , vital:51405 , xlink:href="https://doi.org/10.1016/j.poly.2011.11.005"
- Description: An electrospun polystyrene (PS) fiber incorporating tetraphenoxy phthalocyanine complex of lutetium (LuTPPc/PS) as a photosensitizer was applied for the degradation of 4-chlorophenol in aqueous solution in the presence of visible light. The photocatalytic activity of the LuTPPc in the fiber was compared to that of zinc phthalocyanine (ZnPc) incorporated into the PS fiber, and the former showed higher activity. UV–Vis spectral changes of sample solutions indicated transformation of the analyte with first order kinetics and half-lives that are within one and half hours for LuTPPc/PS. Products identified from the spectral changes and gas chromatography were benzoquinone, hydroquinone and 4,4′-dihydroxydiphenol suggesting that the photodegradation of 4-chlorophenol was through both Types I and II mechanisms.
- Full Text:
- «
- ‹
- 1
- ›
- »