- Title
- Modulation of Plasmodium falciparum chaperones PfHsp70-1 and PfHsp70-x by small molecules
- Creator
- Cockburn, Ingrid Louise
- ThesisAdvisor
- Blatch, Gregory L
- ThesisAdvisor
- Boshoff, Aileen
- Subject
- Plasmodium falciparum Heat shock proteins Molecular chaperones Homeostasis Protein folding Malaria Antimalarials Escherichia coli
- Date
- 2013
- Type
- Thesis
- Type
- Doctoral
- Type
- PhD
- Identifier
- vital:3887
- Identifier
- http://hdl.handle.net/10962/d1001747
- Description
- The heat shock proteins of ~ 70 kDa (Hsp70s) are a conserved group of molecular chaperones important in maintaining the protein homeostasis in cells, carrying out functions including refolding of misfolded or unfolded proteins. Hsp70s function in conjunction with a number of other proteins including Hsp40 cochaperones. Central to the regulation Hsp70 activity is the Hsp70 ATPase cycle, involving ATP hydrolysis by Hsp70, and stimulation of this ATP hydrolysis by Hsp40. PfHsp70-1, the major cytosolic Hsp70 in the malaria parasite, Plasmodium falciparum, and PfHsp70-x, a novel malarial Hsp70 recently found to be exported to the host cell cytosol during the erythrocytic stages of the P. falciparum lifecycle, are both thought to play important roles in the malaria parasite’s survival and virulence, and thus represent novel antimalarial targets. Modulation of the function of these proteins by small molecules could thus lead to the development of antimalarials with novel targets and mechanisms. In the present study, malarial Hsp70s (PfHsp70-1 and PfHsp70-x), human Hsp70 (HSPA1A), malarial Hsp40 (PfHsp40) and human Hsp40 (Hsj1a) were recombinantly produced in Escherichia coli. In a characterisation of the chaperone activity of recombinant PfHsp70-x, the protein was found to have a basal ATPase activity (15.7 nmol ATP/min/mg protein) comparable to that previously described for PfHsp70-1, and an aggregation suppression activity significantly higher than that of PfHsp70-1. In vitro assays were used to screen five compounds of interest (lapachol, bromo-β-lapachona and malonganenones A, B and C) belonging to two compound classes (1,4 naphthoquinones and prenylated alkaloids) for modulatory effects on PfHsp70-1, PfHsp70-x and HsHsp70. A wide range of effects by compounds on the chaperone activities of Hsp70s was observed, including differential effects by compounds on different Hsp70s despite high conservation (≥ 70 % sequence identity) between the Hsp70s. The five compounds were shown to interact with all three Hsp70s in in vitro binding studies. Differential modulation by compounds was observed between the Hsj1a-stimulated ATPase activities of different Hsp70s, suggestive of not only a high degree of specificity of compounds to chaperone systems, but also distinct interactions between different Hsp70s and Hjs1a. The effects of compounds on the survival of P. falciparum parasites as well as mammalian cells was assessed. Bromo-β-lapachona was found to have broad effects across all systems, modulating the chaperone activities of all three Hsp70s, and showing significant toxicity toward both P. falciparum parasites and mammalian cells in culture. Malonganenone A was found to modulate only the malarial Hsp70s, not human Hsp70, showing significant toxicity toward malarial parasites (IC₅₀ ~ 0.8 μM), and comparatively low toxicity toward mammalian cells, representing therefore a novel starting point for a new class of antimalarials potentially targeting a new antimalarial drug target, Hsp70.
- Format
- 219 leaves, pdf
- Publisher
- Rhodes University, Faculty of Science, Biochemistry, Microbiology and Biotechnology
- Language
- English
- Rights
- Cockburn, Ingrid Louise
- Hits: 1795
- Visitors: 2158
- Downloads: 596
Thumbnail | File | Description | Size | Format | |||
---|---|---|---|---|---|---|---|
View Details | SOURCEPDF | 4 MB | Adobe Acrobat PDF | View Details |