Sample size assessments for thermal physiology studies: An R package and R Shiny application
- van Steenderen, Clarke J M, Sutton, Guy F, Owen, Candice A, Martin, Grant D, Coetzee, Julie A
- Authors: van Steenderen, Clarke J M , Sutton, Guy F , Owen, Candice A , Martin, Grant D , Coetzee, Julie A
- Date: 2023
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/444455 , vital:74242 , https://doi.org/10.1111/phen.12416
- Description: Required sample sizes for a study need to be carefully assessed to account for logistics, cost, ethics and statistical rigour. For example, many studies have shown that methodological variations can impact the critical thermal limits (CTLs) recorded for a species, although studies on the impact of sample size on these measures are lacking. Here, we present ThermalSampleR; an R CRAN package and Shiny application that can assist researchers in determining when adequate sample sizes have been reached for their data. The method is particularly useful because it is not taxon specific. The Shiny application offers a user‐friendly interface equivalent to the package for users not familiar with R programming. ThermalSampleR is accompanied by an in‐built example dataset, which we use to guide the user through the workflow with a fully worked tutorial.
- Full Text:
- Authors: van Steenderen, Clarke J M , Sutton, Guy F , Owen, Candice A , Martin, Grant D , Coetzee, Julie A
- Date: 2023
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/444455 , vital:74242 , https://doi.org/10.1111/phen.12416
- Description: Required sample sizes for a study need to be carefully assessed to account for logistics, cost, ethics and statistical rigour. For example, many studies have shown that methodological variations can impact the critical thermal limits (CTLs) recorded for a species, although studies on the impact of sample size on these measures are lacking. Here, we present ThermalSampleR; an R CRAN package and Shiny application that can assist researchers in determining when adequate sample sizes have been reached for their data. The method is particularly useful because it is not taxon specific. The Shiny application offers a user‐friendly interface equivalent to the package for users not familiar with R programming. ThermalSampleR is accompanied by an in‐built example dataset, which we use to guide the user through the workflow with a fully worked tutorial.
- Full Text:
Biological control of South African plants that are invasive elsewhere in the world: A review of earlier and current programmes
- Olckers, Terence, Coetzee, Julie A, Egli, Daniella, Martin, Grant D, Paterson, Iain D, Sutton, Guy F, Wood, Alan R
- Authors: Olckers, Terence , Coetzee, Julie A , Egli, Daniella , Martin, Grant D , Paterson, Iain D , Sutton, Guy F , Wood, Alan R
- Date: 2021
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/414336 , vital:71137 , xlink:href="https://hdl.handle.net/10520/ejc-ento_v29_n3_a21"
- Description: South Africa supports a rich floral diversity, with 21 643 native plant taxa that include a high proportion (76.3%) of endemic species, and many of these favoured as ornamentals, both locally and globally. Consequently, South Africa has contributed substantially to global plant invasions, with 1093 native taxa (5% of all species) naturalized in other countries. At least 80 taxa are invasive in natural or semi-natural ecosystems elsewhere, while an additional 132 taxa are potentially invasive. Of the global naturalized flora, 8.2% originate from South Africa and largely comprise species of Poaceae, Asteraceae, Iridaceae and Fabaceae. Australia, in particular, but also Europe and North America are major recipients of South African weeds. However, few countries have targeted South African plants for biological control (biocontrol), with most efforts undertaken by Australia. Previous and current targets have involved only 26 species with 17 agents (15 insects, one mite and one rust fungus) of South African origin released on five target species in Australia and the United States of America. South Africa’s history of weed biocontrol, together with a large cohort of active scientists, is currently facilitating several internationally funded programmes targeting invasive plants of South African origin. In particular, the recently inaugurated Centre for Biological Control at Rhodes University and the University of KwaZulu-Natal have provided the impetus for novel efforts on five new target species and renewed efforts on four previously targeted species. In this contribution, we review the history of earlier biocontrol programmes against weeds of South African origin and the status of projects currently in progress in South Africa.
- Full Text:
- Authors: Olckers, Terence , Coetzee, Julie A , Egli, Daniella , Martin, Grant D , Paterson, Iain D , Sutton, Guy F , Wood, Alan R
- Date: 2021
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/414336 , vital:71137 , xlink:href="https://hdl.handle.net/10520/ejc-ento_v29_n3_a21"
- Description: South Africa supports a rich floral diversity, with 21 643 native plant taxa that include a high proportion (76.3%) of endemic species, and many of these favoured as ornamentals, both locally and globally. Consequently, South Africa has contributed substantially to global plant invasions, with 1093 native taxa (5% of all species) naturalized in other countries. At least 80 taxa are invasive in natural or semi-natural ecosystems elsewhere, while an additional 132 taxa are potentially invasive. Of the global naturalized flora, 8.2% originate from South Africa and largely comprise species of Poaceae, Asteraceae, Iridaceae and Fabaceae. Australia, in particular, but also Europe and North America are major recipients of South African weeds. However, few countries have targeted South African plants for biological control (biocontrol), with most efforts undertaken by Australia. Previous and current targets have involved only 26 species with 17 agents (15 insects, one mite and one rust fungus) of South African origin released on five target species in Australia and the United States of America. South Africa’s history of weed biocontrol, together with a large cohort of active scientists, is currently facilitating several internationally funded programmes targeting invasive plants of South African origin. In particular, the recently inaugurated Centre for Biological Control at Rhodes University and the University of KwaZulu-Natal have provided the impetus for novel efforts on five new target species and renewed efforts on four previously targeted species. In this contribution, we review the history of earlier biocontrol programmes against weeds of South African origin and the status of projects currently in progress in South Africa.
- Full Text:
Naturally occurring phytopathogens enhance biological control of water hyacinth (Eichhornia crassipes) by Megamelus scutellaris (Hemiptera: Delphacidae), even in eutrophic water
- Sutton, Guy F, Compton, Stephen G, Coetzee, Julie A
- Authors: Sutton, Guy F , Compton, Stephen G , Coetzee, Julie A
- Date: 2016
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/479034 , vital:78253 , https://doi.org/10.1016/j.biocontrol.2016.10.003
- Description: Insect biological control agents directly damage target weeds by removal of plant biomass, but herbivorous insects have both direct and indirect impacts on their host plants and can also facilitate pathogen infection. Megamelus scutellaris Berg (Hemiptera: Delphacidae) was recently released into South Africa to help control invasive water hyacinth (Eichhornia crassipes, Pontederiaceae). We compared the impact of fungicide surface-sterilised and unsterilised M. scutellaris individuals and water hyacinth leaves on growth of the weed at two nutrient levels. The survival and reproduction of adult M. scutellaris was not reduced by sterilisation. Under high nutrient conditions, unsterilised M. scutellaris with unsterilised leaves reduced water hyacinth daughter plant production by 32%, length of the second petiole by 15%, chlorophyll content by 27% and wet weight biomass by 48%, while also increasing leaf chlorosis 17-fold, in relation to control plants under the same nutrient regime. Surface sterilisation of the insect and/or plant surfaces led to a general reduction in these impacts on water hyacinth growth and health. This contrast was less evident under low nutrient conditions. Megamelus scutellaris facilitated infection by fungal and other pathogens, thus its biology is compatible with pathogens that could be developed into mycoherbicides. This integrated approach may be ideal for management of infestations of water hyacinth in eutrophic water systems where control has been problematic, both in South Africa and elsewhere.
- Full Text:
- Authors: Sutton, Guy F , Compton, Stephen G , Coetzee, Julie A
- Date: 2016
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/479034 , vital:78253 , https://doi.org/10.1016/j.biocontrol.2016.10.003
- Description: Insect biological control agents directly damage target weeds by removal of plant biomass, but herbivorous insects have both direct and indirect impacts on their host plants and can also facilitate pathogen infection. Megamelus scutellaris Berg (Hemiptera: Delphacidae) was recently released into South Africa to help control invasive water hyacinth (Eichhornia crassipes, Pontederiaceae). We compared the impact of fungicide surface-sterilised and unsterilised M. scutellaris individuals and water hyacinth leaves on growth of the weed at two nutrient levels. The survival and reproduction of adult M. scutellaris was not reduced by sterilisation. Under high nutrient conditions, unsterilised M. scutellaris with unsterilised leaves reduced water hyacinth daughter plant production by 32%, length of the second petiole by 15%, chlorophyll content by 27% and wet weight biomass by 48%, while also increasing leaf chlorosis 17-fold, in relation to control plants under the same nutrient regime. Surface sterilisation of the insect and/or plant surfaces led to a general reduction in these impacts on water hyacinth growth and health. This contrast was less evident under low nutrient conditions. Megamelus scutellaris facilitated infection by fungal and other pathogens, thus its biology is compatible with pathogens that could be developed into mycoherbicides. This integrated approach may be ideal for management of infestations of water hyacinth in eutrophic water systems where control has been problematic, both in South Africa and elsewhere.
- Full Text:
- «
- ‹
- 1
- ›
- »