- Title
- A geological model of shear zone gold deposits in the Pietersburg Greenstone Belt, South Africa
- Creator
- Franey, N J
- Subject
- Greenstone belts -- South Africa
- Subject
- Gold ores -- Geology -- South Africa
- Date
- 1987
- Date
- 2013-04-17
- Type
- Thesis
- Type
- Masters
- Type
- MSc
- Identifier
- vital:5032
- Identifier
- http://hdl.handle.net/10962/d1007190
- Identifier
- Greenstone belts -- South Africa
- Identifier
- Gold ores -- Geology -- South Africa
- Description
- The Pletersburg greenstone belt Is located In South Africa, about 300 km northeast of Johannesburg. It hosts a significant amount of gold mineralization and just over 1000 kg of gold have been produced from Its various reefs and secondary deposits. The greenstone belt is interpreted as an Archean ophiolite complex. It comprlses a volcano-sedimentary succession (the Pletersburg Group) which Is subdivided Into a basal greenstone sequence, interpreted as oceanic crust, and an upper sedimentary cover sequence. A number of major shear zones, which are thought to represent thrusts that developed during the subduction of the greenstone sequence, form an integral part of the stratigraphy . Four stages of deformation (D₁-D₄) and four phases of metamorphism (H₁-H₄) (three of which are correlatable with the peak stages of deformation) are recognized. The primary gold deposits are all shear zones related. but they are subdivided into greenstone, sedimentation and granIte-hosted types. Geographically, they occur In three distinct goldfields: Eerstellng, Roodepoort and Marbastad. The greenstone-hosted · Plenaar-Doreen shear complex Is In the Eersteiing goldfield and hosts eight gold occurrences. Within the complex, Girlie North Reef is the 640m-long "pay" section of the Girlie North shear zone. This reef is characterized, macroscopically, by a Quartz-carbonate-chlorite-sulphlde assemblage and, mlcroscoplcally, by the presence of tourmaline, arsenopyrlte and Au. Geochemical evidence Indicates that mineralizing fluids were H₂O and CO₂-bearing and rich In S, K and Al. The wall rock alteratlon was Isochemlcal but Is manifest as a change In mineralogy from a hornblende + plagioclase assemblage to an actlnollte/tremollte + Quartz + clay assemblage. This Is best developed In the hangIng wall of the reef and is thought to have been caused by hydrogen ion metasomatism. The Arsenopyrite Reef was one of the main sediment-hosted shear zone gold producers In the Harabastad goldfield. This reef Is Interpreted as the basal margin of a shear zone whose top contact Is probably represented by the Quartz Vein Reef. The shear zone consists predomonantly of quartz and carbonate, and the two "pay" reefs are characterized by tourmallne. arsenopyrite and Au. No wall rock alteration was identified In this study, Based on the mineralogy and geochemical signature of the Girlie Nortn Reef and the Arsenopyrite Reef, It Is proposed that both were formed at the $The Pletersburg greenstone belt Is located In South Africa, about 300 km northeast of Johannesburg. It hosts a significant amount of gold mineralization and just over 1000 kg of gold have been produced from Its various reefs and secondary deposits. The greenstone belt is interpreted as an Archean ophiolite complex. It comprlses a volcano-sedimentary succession (the Pletersburg Group) which Is subdivided Into a basal greenstone sequence, interpreted as oceanic crust, and an upper sedimentary cover sequence. A number of major shear zones, which are thought to represent thrusts that developed during the subduction of the greenstone sequence, form an integral part of the stratigraphy . Four stages of deformation (D₁-D₄) and four phases of metamorphism (H₁-H₄) (three of which are correlatable with the peak stages of deformation) are recognized. The primary gold deposits are all shear zones related. but they are subdivided into greenstone, sedimentation and granIte-hosted types. Geographically, they occur In three distinct goldfields: Eerstellng, Roodepoort and Marbastad. The greenstone-hosted · Plenaar-Doreen shear complex Is In the Eersteiing goldfield and hosts eight gold occurrences. Within the complex, Girlie North Reef is the 640m-long "pay" section of the Girlie North shear zone. This reef is characterized, macroscopically, by a Quartz-carbonate-chlorite-sulphlde assemblage and, mlcroscoplcally, by the presence of tourmaline, arsenopyrlte and Au. Geochemical evidence Indicates that mineralizing fluids were H₂O and CO₂-bearing and rich In S, K and Al. The wall rock alteratlon was Isochemlcal but Is manifest as a change In mineralogy from a hornblende + plagioclase assemblage to an actlnollte/tremollte + Quartz + clay assemblage. This Is best developed In the hangIng wall of the reef and is thought to have been caused by hydrogen ion metasomatism. The Arsenopyrite Reef was one of the main sediment-hosted shear zone gold producers In the Harabastad goldfield. This reef Is Interpreted as the basal margin of a shear zone whose top contact Is probably represented by the Quartz Vein Reef. The shear zone consists predomonantly of quartz and carbonate, and the two "pay" reefs are characterized by tourmallne. arsenopyrite and Au. No wall rock alteration was identified In this study, Based on the mineralogy and geochemical signature of the Girlie Nortn Reef and the Arsenopyrite Reef, It Is proposed that both were formed at the same time. Textural evidence Indicates that tourmaline, arsenopyrite and Au were all very late In the paragenesis of minerallzatlon. The presence of tourmaline also Indicates a probable granite association. It Is proposed that the maln gold mineralizing event was synchronous with the Intrusion of granitoids (and therefore also with (D₁-D₄) and (H₁-H₄) and that most of the Au was derived from felsic magma. Gold was partitioned Into a magmatic hydrothermal fluid and then transported into the greenstone belt as a chlorIde complex. These magmatiC fluids were channelled up shear zones whIch had already been mineralized with a quartz-carbonate-chlorlte - sulphide assemblage by previous metamorphic fluidS. generated during the dynamic (D₂-related) H₂-phase of metamorphism. The Au was then deposIted as the result of a change In a fluid variable, such as temperature, pH, f0₂, or the activity of Cl (some Au may have been transported In a sulphur complex and so the activity of reduced 5 could also have been Important).
- Format
- 137 p., pdf
- Publisher
- Rhodes University, Faculty of Science, Geology
- Language
- English
- Rights
- Franey, N J
- Hits: 1883
- Visitors: 1979
- Downloads: 163
Thumbnail | File | Description | Size | Format | |||
---|---|---|---|---|---|---|---|
View Details | SOURCEPDF | 15 MB | Adobe Acrobat PDF | View Details |