Catalytic oxidation of thioanisole using oxovanadium (IV)‐functionalized electrospun polybenzimidazole nanofibers
- Authors: Walmsley, Ryan S , Hlangothi, Percy , Litwinski, Christian , Nyokong, Tebello , Torto, Nelson , Tshentu, Zenixole R
- Date: 2013
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/242083 , vital:51000 , xlink:href="https://doi.org/10.1002/app.38067"
- Description: Polybenzimidazole fibers, with an average diameter of 262 nm, were produced by the process of electrospinning. These fibers were used as a solid support material for the immobilization of oxovanadium(IV) which was achieved via a reaction with vanadyl sulfate. The oxovanadium(IV)-functionalized nanofibers were used as heterogeneous catalysts for the oxidation of thioanisole under both batch and pseudo-continuous flow conditions with great success. Under batch conditions near quantitative oxidation of thioanisole was achieved in under 90 min, even after four successive catalytic reactions. Under continuous conditions, excellent conversion of thioanisole was maintained throughout the period studied at flow rates of up to 2 mLh−1. This study, therefore, proposes that electrospun polybenzimidazole nanofibers, with their small diameters, impressive chemical and thermal stability, as well as coordinating benzimidazole group, may be a desirable support material for immobilization of homogeneous catalysts.
- Full Text:
Oxovanadium (IV)-containing poly (styrene-co-4′-ethenyl-2-hydroxyphenylimidazole) electrospun nanofibers for the catalytic oxidation of thioanisole
- Authors: Walmsley, Ryan S , Litwinski, Christian , Antunes, Edith M , Hlangothi, Percy , Hosten, Eric C , McCleland, Cedric , Nyokong, Tebello , Torto, Nelson , Tshentu, Zenixole R
- Date: 2013
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/241665 , vital:50959 , xlink:href="https://doi.org/10.1016/j.molcata.2013.07.018"
- Description: The catalytic fibers have been fabricated by the electrospinning of a copolymer of styrene and 2-(2′-hydroxy-4′-ethenylphenyl)imidazole {p(ST-co-VPIM)} followed by a reaction with a methanolic vanadyl solution to afford the oxovanadium(IV)-containing poly(styrene-co-4′-ethenyl-2-hydroxyphenylimidazole) fibers {p(ST-co-VPIM)-VO fibers}. The relationship between polymer concentration and fiber diameter was investigated, and at high concentration (20 wt%) the fibers were quite large (average diameter of 3.8 μm) but as the concentration was reduced fibers of much lower diameter were produced (0.6 μm using 8 wt%). The BET surface area for p(ST-co-VPIM) fibers (0.6 μm diameter) was 47.9 m2 g−1 and functionalization of p(ST-co-VPIM) with vanadyl resulted in an increase in surface area to 60.7 m2 g−1 for p(ST-co-VPIM)-VO. The presence of vanadyl was confirmed by XPS and EPR. The EPR spectral analyses depicted complex speciation of vanadium within these polymer supports. These catalytic fibers were applied under batch and continuous flow conditions for the catalytic oxidation of thioanisole using hydrogen peroxide. The continuous flow method gave excellent and constant conversion throughout the 10 h period studied. The leaching of vanadium from the fiber support was 4% over the 10 h period indicating a significant stability of the material.
- Full Text: