Indolyl-3-ethanone-α-thioethers: a promising new class of non-toxic antimalarial agents
- Svogie, Archibald L, Isaacs, Michelle, Hoppe, Heinrich C, Khanye, Setshaba D, Veale, Clinton G L
- Authors: Svogie, Archibald L , Isaacs, Michelle , Hoppe, Heinrich C , Khanye, Setshaba D , Veale, Clinton G L
- Date: 2016
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/66233 , vital:28920 , https://doi.org/10.1016/j.ejmech.2016.02.056
- Description: publisher version , The success of chemotherapeutics in easing the burden of malaria is under continuous threat from ever-evolving parasite resistance, including resistance to artemisinin combination therapies. Therefore, the discovery of new classes of antimalarials which inhibit new biological targets is imperative to controlling malaria. Accordingly, we report here the discovery of indolyl-3-ethanone-α-thioethers, a new class of antimalarial compounds with encouraging activity. Synthesis of a focused library of compounds revealed important insight into the SAR of this class of compounds, including critical information regarding the position and chemical nature of substituents on both the thiophenol and indole rings. This investigation ultimately led to the discovery of two hit compounds (16 and 27) which exhibited nano molar in vitro antimalarial activity coupled to no observable toxicity against a HeLa cell line.
- Full Text: false
- Authors: Svogie, Archibald L , Isaacs, Michelle , Hoppe, Heinrich C , Khanye, Setshaba D , Veale, Clinton G L
- Date: 2016
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/66233 , vital:28920 , https://doi.org/10.1016/j.ejmech.2016.02.056
- Description: publisher version , The success of chemotherapeutics in easing the burden of malaria is under continuous threat from ever-evolving parasite resistance, including resistance to artemisinin combination therapies. Therefore, the discovery of new classes of antimalarials which inhibit new biological targets is imperative to controlling malaria. Accordingly, we report here the discovery of indolyl-3-ethanone-α-thioethers, a new class of antimalarial compounds with encouraging activity. Synthesis of a focused library of compounds revealed important insight into the SAR of this class of compounds, including critical information regarding the position and chemical nature of substituents on both the thiophenol and indole rings. This investigation ultimately led to the discovery of two hit compounds (16 and 27) which exhibited nano molar in vitro antimalarial activity coupled to no observable toxicity against a HeLa cell line.
- Full Text: false
Plasmodium falciparum Hep1 is required to prevent the self aggregation of PfHsp70-3
- Nyakundi, David O, Vuko, Loyiso A M, Bentley, Stephen J, Hoppe, Heinrich C, Blatch, Gregory L, Boshoff, Aileen
- Authors: Nyakundi, David O , Vuko, Loyiso A M , Bentley, Stephen J , Hoppe, Heinrich C , Blatch, Gregory L , Boshoff, Aileen
- Date: 2016
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/66109 , vital:28903 , https://doi.org/10.1371/journal.pone.0156446
- Description: publisher version , The majority of mitochondrial proteins are encoded in the nucleus and need to be imported from the cytosol into the mitochondria, and molecular chaperones play a key role in the efficient translocation and proper folding of these proteins in the matrix. One such molecular chaperone is the eukaryotic mitochondrial heat shock protein 70 (Hsp70); however, it is prone to self-aggregation and requires the presence of an essential zinc-finger protein, Hsp70-escort protein 1 (Hep1), to maintain its structure and function. PfHsp70-3, the only Hsp70 predicted to localize in the mitochondria of P. falciparum, may also rely on a Hep1 orthologue to prevent self-aggregation. In this study, we identified a putative Hep1 orthologue in P. falciparum and co-expression of PfHsp70-3 and PfHep1 enhanced the solubility of PfHsp70-3. PfHep1 suppressed the thermally induced aggregation of PfHsp70-3 but not the aggregation of malate dehydrogenase or citrate synthase, thus showing specificity for PfHsp70-3. Zinc ions were indeed essential for maintaining the function of PfHep1, as EDTA chelation abrogated its abilities to suppress the aggregation of PfHsp70-3. Soluble and functional PfHsp70-3, acquired by co-expression with PfHep-1, will facilitate the biochemical characterisation of this particular Hsp70 protein and its evaluation as a drug target for the treatment of malaria. , This work was funded by grants from the National Research Foundation (NRF); grant number 87663 and Deutsche Forschungsgemeinschaft (DFG); grant number LI 402/14-1. D.O.N. is the recipient of academic development and training funds from Mwenge Catholic University, Moshi, Tanzania. S.J.B. is the recipient of an NRF Doctoral Innovation Scholarship.
- Full Text:
- Authors: Nyakundi, David O , Vuko, Loyiso A M , Bentley, Stephen J , Hoppe, Heinrich C , Blatch, Gregory L , Boshoff, Aileen
- Date: 2016
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/66109 , vital:28903 , https://doi.org/10.1371/journal.pone.0156446
- Description: publisher version , The majority of mitochondrial proteins are encoded in the nucleus and need to be imported from the cytosol into the mitochondria, and molecular chaperones play a key role in the efficient translocation and proper folding of these proteins in the matrix. One such molecular chaperone is the eukaryotic mitochondrial heat shock protein 70 (Hsp70); however, it is prone to self-aggregation and requires the presence of an essential zinc-finger protein, Hsp70-escort protein 1 (Hep1), to maintain its structure and function. PfHsp70-3, the only Hsp70 predicted to localize in the mitochondria of P. falciparum, may also rely on a Hep1 orthologue to prevent self-aggregation. In this study, we identified a putative Hep1 orthologue in P. falciparum and co-expression of PfHsp70-3 and PfHep1 enhanced the solubility of PfHsp70-3. PfHep1 suppressed the thermally induced aggregation of PfHsp70-3 but not the aggregation of malate dehydrogenase or citrate synthase, thus showing specificity for PfHsp70-3. Zinc ions were indeed essential for maintaining the function of PfHep1, as EDTA chelation abrogated its abilities to suppress the aggregation of PfHsp70-3. Soluble and functional PfHsp70-3, acquired by co-expression with PfHep-1, will facilitate the biochemical characterisation of this particular Hsp70 protein and its evaluation as a drug target for the treatment of malaria. , This work was funded by grants from the National Research Foundation (NRF); grant number 87663 and Deutsche Forschungsgemeinschaft (DFG); grant number LI 402/14-1. D.O.N. is the recipient of academic development and training funds from Mwenge Catholic University, Moshi, Tanzania. S.J.B. is the recipient of an NRF Doctoral Innovation Scholarship.
- Full Text:
Plasmodium falciparum Hsp70-z, an Hsp110 homologue, exhibits independent chaperone activity and interacts with Hsp70-1 in a nucleotide-dependent fashion
- Ziningwa, Tawanda, Achilonu, Ikechukwu, Hoppe, Heinrich C, Prinsloo, Earl, Dirr, Heinrich W, Shonhai, Addmore
- Authors: Ziningwa, Tawanda , Achilonu, Ikechukwu , Hoppe, Heinrich C , Prinsloo, Earl , Dirr, Heinrich W , Shonhai, Addmore
- Date: 2016
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/431765 , vital:72802 , xlink:href="https://doi.org/10.1007/s12192-016-0678-4"
- Description: The role of molecular chaperones, among them heat shock proteins (Hsps), in the development of malaria parasites has been well documented. Hsp70s are molecular chaperones that facilitate protein folding. Hsp70 proteins are composed of an N-terminal nucleotide binding domain (NBD), which confers them with ATPase activity and a Cterminal substrate binding domain (SBD). In the ADPbound state, Hsp70 possesses high affinity for substrate and releases the folded substrate when it is bound to ATP. The two domains are connected by a conserved linker segment. Hsp110 proteins possess an extended lid segment, a feature that distinguishes them from canonical Hsp70s.
- Full Text:
- Authors: Ziningwa, Tawanda , Achilonu, Ikechukwu , Hoppe, Heinrich C , Prinsloo, Earl , Dirr, Heinrich W , Shonhai, Addmore
- Date: 2016
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/431765 , vital:72802 , xlink:href="https://doi.org/10.1007/s12192-016-0678-4"
- Description: The role of molecular chaperones, among them heat shock proteins (Hsps), in the development of malaria parasites has been well documented. Hsp70s are molecular chaperones that facilitate protein folding. Hsp70 proteins are composed of an N-terminal nucleotide binding domain (NBD), which confers them with ATPase activity and a Cterminal substrate binding domain (SBD). In the ADPbound state, Hsp70 possesses high affinity for substrate and releases the folded substrate when it is bound to ATP. The two domains are connected by a conserved linker segment. Hsp110 proteins possess an extended lid segment, a feature that distinguishes them from canonical Hsp70s.
- Full Text:
Supplementary Material Synthesis and biological evaluation of (E)-cinnamic acid,(E)-2-styrylthiazole and (E)-2-[2-(naphthalen-1-yl) vinyl] thiazole derivatives
- Olawode, Emmanuel O, Tandlich, Roman, Prinsloo, Earl, Isaacs, Michelle, Hoppe, Heinrich C, Seldon, Ronnett, Warner, Digby F, Steenkamp, Vanessa, Kaye, Perry T
- Authors: Olawode, Emmanuel O , Tandlich, Roman , Prinsloo, Earl , Isaacs, Michelle , Hoppe, Heinrich C , Seldon, Ronnett , Warner, Digby F , Steenkamp, Vanessa , Kaye, Perry T
- Date: 2016
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/431778 , vital:72803 , xlink:href=" https://www.arkat-usa.org/get-file/59868/"
- Description: The screening was conducted using multi-well plates which are suited for HeLa cells in the log phase of growth with final cell density > 10 cells/cm. Each experiment normally includes a blank control, containing medium without the cells.28,45 Non-contaminated HeLa cells (6.57 x 105 cells per well) in media were allowed to grow in the incubator under an atmosphere of 5% CO2 at 37 0C for 24 h. To each well was dispensed 200 µL of HeLa culture, containing 6.57 x 105 cells under LabEAir laminar flow hood (Vivid Air, South Africa); 20 µL of resazurin dye (Sigma TOX-8) and test compound (50 µL) were added, which were then incubated in the presence of 5% CO2 at 37 0C for 24 hours in a shaker, to enhance the distribution of the dye. The absorbance of each well was measured with Bio-tek Power Wave X fluorometer (Beijing, China), and increases in fluorescence was monitored at a wavelength of 590 nm, using an excitation wavelength of 560 nm.
- Full Text:
- Authors: Olawode, Emmanuel O , Tandlich, Roman , Prinsloo, Earl , Isaacs, Michelle , Hoppe, Heinrich C , Seldon, Ronnett , Warner, Digby F , Steenkamp, Vanessa , Kaye, Perry T
- Date: 2016
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/431778 , vital:72803 , xlink:href=" https://www.arkat-usa.org/get-file/59868/"
- Description: The screening was conducted using multi-well plates which are suited for HeLa cells in the log phase of growth with final cell density > 10 cells/cm. Each experiment normally includes a blank control, containing medium without the cells.28,45 Non-contaminated HeLa cells (6.57 x 105 cells per well) in media were allowed to grow in the incubator under an atmosphere of 5% CO2 at 37 0C for 24 h. To each well was dispensed 200 µL of HeLa culture, containing 6.57 x 105 cells under LabEAir laminar flow hood (Vivid Air, South Africa); 20 µL of resazurin dye (Sigma TOX-8) and test compound (50 µL) were added, which were then incubated in the presence of 5% CO2 at 37 0C for 24 hours in a shaker, to enhance the distribution of the dye. The absorbance of each well was measured with Bio-tek Power Wave X fluorometer (Beijing, China), and increases in fluorescence was monitored at a wavelength of 590 nm, using an excitation wavelength of 560 nm.
- Full Text:
Synthesis and evaluation of substituted 4-(N-benzylamino)cinnamate esters as potential anti-cancer agents and HIV-1 integrase inhibitors
- Faridoon, H, Edkins, Adrienne L, Isaacs, Michelle, Mnkandhla, Dumisani, Hoppe, Heinrich C, Kaye, Perry T
- Authors: Faridoon, H , Edkins, Adrienne L , Isaacs, Michelle , Mnkandhla, Dumisani , Hoppe, Heinrich C , Kaye, Perry T
- Date: 2016
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/66289 , vital:28929 , https://doi.org/10.1016/j.bmcl.2016.05.023
- Description: publisher version , Encouraging selectivity and low micromolar activity against HeLa cervical carcinoma (IC50 ⩾ 3.0 μM) and the aggressive MDA-MB-231 triple negative breast carcinoma (IC50 ⩾ 9.6 μM) cell lines has been exhibited by a number of readily accessible 4-(N-benzylamino)cinnamate esters. The potential of the ligands as HIV-1 integrase inhibitors has also been examined.
- Full Text: false
- Authors: Faridoon, H , Edkins, Adrienne L , Isaacs, Michelle , Mnkandhla, Dumisani , Hoppe, Heinrich C , Kaye, Perry T
- Date: 2016
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/66289 , vital:28929 , https://doi.org/10.1016/j.bmcl.2016.05.023
- Description: publisher version , Encouraging selectivity and low micromolar activity against HeLa cervical carcinoma (IC50 ⩾ 3.0 μM) and the aggressive MDA-MB-231 triple negative breast carcinoma (IC50 ⩾ 9.6 μM) cell lines has been exhibited by a number of readily accessible 4-(N-benzylamino)cinnamate esters. The potential of the ligands as HIV-1 integrase inhibitors has also been examined.
- Full Text: false
- «
- ‹
- 1
- ›
- »