Assessment of the likely sensitivity to climate change for the key marine species in the southern Benguela system
- Ortega-Cisneros, Kelly, Yokwana, Sibusiso, Sauer, Warwick H H, Cochrane, Kevern L, James, Nicola C, Potts, Warren M, Singh, L, Smale, Malcolm J, Wood, A, Pecl, Gretta T
- Authors: Ortega-Cisneros, Kelly , Yokwana, Sibusiso , Sauer, Warwick H H , Cochrane, Kevern L , James, Nicola C , Potts, Warren M , Singh, L , Smale, Malcolm J , Wood, A , Pecl, Gretta T
- Date: 2018
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/123211 , vital:35415 , https://doi.10.2989/1814232X.2018.1512526
- Description: Climate change is altering many environmental parameters of coastal waters and open oceans, leading to substantial present-day and projected changes in the distribution, abundance and phenology of marine species. Attempts to assess how each species might respond to climate change can be data-, resource- and time-intensive. Moreover, in many regions of the world, including South Africa, species may be of vital socioeconomic or ecological importance though critical gaps may exist in our basic biological or ecological knowledge of the species. Here, we adapt and apply a trait-based sensitivity assessment for the key marine species in the southern Benguela system to estimate their potential relative sensitivity to the impacts of climate change. For our analysis, 40 priority species were selected based on their socioeconomic, ecological and/or recreational importance in the system. An extensive literature review and consultation with experts was undertaken concerning each species to gather information on their life history, habitat use and potential stressors. Fourteen attributes were used to estimate the selected species’ sensitivity and capacity to respond to climate change. A score ranging from low to high sensitivity was given for each attribute, based on the available information. Similarly, a score was assigned to the type and quality of information used to score each particular attribute, allowing an assessment of data-quality inputs for each species. The analysis identified the white steenbras Lithognathus lithognathus, soupfin shark Galeorhinus galeus, St Joseph Callorhinchus capensis and abalone Haliotis midae as potentially the most sensitive species to climate-change impacts in the southern Benguela system. There were data gaps for larval dispersal and settlement and metamorphosis cues for most of the evaluated species. Our results can be used by resource managers to determine the type of monitoring, intervention and planning that may be required to best respond to climate change, given the limited resources and significant knowledge gaps in many cases.
- Full Text:
- Authors: Ortega-Cisneros, Kelly , Yokwana, Sibusiso , Sauer, Warwick H H , Cochrane, Kevern L , James, Nicola C , Potts, Warren M , Singh, L , Smale, Malcolm J , Wood, A , Pecl, Gretta T
- Date: 2018
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/123211 , vital:35415 , https://doi.10.2989/1814232X.2018.1512526
- Description: Climate change is altering many environmental parameters of coastal waters and open oceans, leading to substantial present-day and projected changes in the distribution, abundance and phenology of marine species. Attempts to assess how each species might respond to climate change can be data-, resource- and time-intensive. Moreover, in many regions of the world, including South Africa, species may be of vital socioeconomic or ecological importance though critical gaps may exist in our basic biological or ecological knowledge of the species. Here, we adapt and apply a trait-based sensitivity assessment for the key marine species in the southern Benguela system to estimate their potential relative sensitivity to the impacts of climate change. For our analysis, 40 priority species were selected based on their socioeconomic, ecological and/or recreational importance in the system. An extensive literature review and consultation with experts was undertaken concerning each species to gather information on their life history, habitat use and potential stressors. Fourteen attributes were used to estimate the selected species’ sensitivity and capacity to respond to climate change. A score ranging from low to high sensitivity was given for each attribute, based on the available information. Similarly, a score was assigned to the type and quality of information used to score each particular attribute, allowing an assessment of data-quality inputs for each species. The analysis identified the white steenbras Lithognathus lithognathus, soupfin shark Galeorhinus galeus, St Joseph Callorhinchus capensis and abalone Haliotis midae as potentially the most sensitive species to climate-change impacts in the southern Benguela system. There were data gaps for larval dispersal and settlement and metamorphosis cues for most of the evaluated species. Our results can be used by resource managers to determine the type of monitoring, intervention and planning that may be required to best respond to climate change, given the limited resources and significant knowledge gaps in many cases.
- Full Text:
Metabolic activity throughout early development of dusky kob Argyrosomus japonicus (Sciaenidae)
- Edworthy, Carla, James, Nicola C, Erasmus, B, Kemp, Justin O G, Kaiser, Horst, Potts, Warren M
- Authors: Edworthy, Carla , James, Nicola C , Erasmus, B , Kemp, Justin O G , Kaiser, Horst , Potts, Warren M
- Date: 2018
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/125159 , vital:35737 , https://doi.10.2989/1814232x.2018.1441907
- Description: Metabolism quantifies the energy-consuming activities of an organism (Nelson 2016) and is used as an indication of how organisms partition energy resources to activities that allow them to survive, grow and reproduce (Post and Lee 1996). The metabolic profile, which is a composition of the various metabolic rates of an individual, therefore gives an indication of the efficiency of energy transformation and allocation (Fry 1971; Brown et al. 2004). McKenzie et al. (2016) suggested that an organism’s physiology contributes towards its ability to survive under specific environmental conditions. As a result, physiological condition can be a reflection of the performance and fitness of an organism (Pörtner 2010). When combined with information on changing environmental conditions, physiological information can provide insight into species- and community-level responses (Pörtner and Farrell 2008). These kinds of data have served numerous ecological applications, including resource management, conservation (McKenzie et al. 2016) and climate-change assessments (Pörtner and Farrell 2008).
- Full Text:
- Authors: Edworthy, Carla , James, Nicola C , Erasmus, B , Kemp, Justin O G , Kaiser, Horst , Potts, Warren M
- Date: 2018
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/125159 , vital:35737 , https://doi.10.2989/1814232x.2018.1441907
- Description: Metabolism quantifies the energy-consuming activities of an organism (Nelson 2016) and is used as an indication of how organisms partition energy resources to activities that allow them to survive, grow and reproduce (Post and Lee 1996). The metabolic profile, which is a composition of the various metabolic rates of an individual, therefore gives an indication of the efficiency of energy transformation and allocation (Fry 1971; Brown et al. 2004). McKenzie et al. (2016) suggested that an organism’s physiology contributes towards its ability to survive under specific environmental conditions. As a result, physiological condition can be a reflection of the performance and fitness of an organism (Pörtner 2010). When combined with information on changing environmental conditions, physiological information can provide insight into species- and community-level responses (Pörtner and Farrell 2008). These kinds of data have served numerous ecological applications, including resource management, conservation (McKenzie et al. 2016) and climate-change assessments (Pörtner and Farrell 2008).
- Full Text:
- «
- ‹
- 1
- ›
- »