Detection of the in vitro modulation of Plasmodium falciparum Arf1 by Sec7 and ArfGAP domains using a colorimetric plate-based assay:
- Swart, Tarryn, Khan, Farrah D, Ntlantsana, Apelele, Laming, Dustin, Veale, Clinton G L, Przyborski, Jude M, Edkins, Adrienne L, Hoppe, Heinrich C
- Authors: Swart, Tarryn , Khan, Farrah D , Ntlantsana, Apelele , Laming, Dustin , Veale, Clinton G L , Przyborski, Jude M , Edkins, Adrienne L , Hoppe, Heinrich C
- Date: 2020
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/165418 , vital:41242 , https://0-doi.org.wam.seals.ac.za/10.1038/s41598-020-61101-3
- Description: The regulation of human Arf1 GTPase activity by ArfGEFs that stimulate GDP/GTP exchange and ArfGAPs that mediate GTP hydrolysis has attracted attention for the discovery of Arf1 inhibitors as potential anti-cancer agents. The malaria parasite Plasmodium falciparum encodes a Sec7 domain-containing protein - presumably an ArfGEF - and two putative ArfGAPs, as well as an Arf1 homologue (PfArf1) that is essential for blood-stage parasite viability. However, ArfGEF and ArfGAP-mediated activation/deactivation of PfArf1 has not been demonstrated.
- Full Text:
- Date Issued: 2020
- Authors: Swart, Tarryn , Khan, Farrah D , Ntlantsana, Apelele , Laming, Dustin , Veale, Clinton G L , Przyborski, Jude M , Edkins, Adrienne L , Hoppe, Heinrich C
- Date: 2020
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/165418 , vital:41242 , https://0-doi.org.wam.seals.ac.za/10.1038/s41598-020-61101-3
- Description: The regulation of human Arf1 GTPase activity by ArfGEFs that stimulate GDP/GTP exchange and ArfGAPs that mediate GTP hydrolysis has attracted attention for the discovery of Arf1 inhibitors as potential anti-cancer agents. The malaria parasite Plasmodium falciparum encodes a Sec7 domain-containing protein - presumably an ArfGEF - and two putative ArfGAPs, as well as an Arf1 homologue (PfArf1) that is essential for blood-stage parasite viability. However, ArfGEF and ArfGAP-mediated activation/deactivation of PfArf1 has not been demonstrated.
- Full Text:
- Date Issued: 2020
The in vitro antiplasmodial and antiproliferative activity of new ferrocene-based α-aminocresols targeting hemozoin inhibition and DNA interaction:
- Mbaba, Mziyanda, Dingle, Laura M K, Swart, Tarryn, Cash, Devon, Laming, Dustin, de la Mare, Jo-Anne, Taylor, Dale, Hoppe, Heinrich C, Biot, Christophe, Edkins, Adrienne L, Khanye, Setshaba D
- Authors: Mbaba, Mziyanda , Dingle, Laura M K , Swart, Tarryn , Cash, Devon , Laming, Dustin , de la Mare, Jo-Anne , Taylor, Dale , Hoppe, Heinrich C , Biot, Christophe , Edkins, Adrienne L , Khanye, Setshaba D
- Date: 2020
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/149347 , vital:38827 , https://0-doi.org.wam.seals.ac.za/10.1002/cbic.202000132
- Description: Compounds incorporating ferrocene in a aminocresol scaffold showed antiplasmodial and anticancer activity. SAR studies revealed that an OH group and rotatable C–NH bond are vital for biological activity, with spectrophotometric techniques and docking simulations suggesting a dual mode of action involving hemozoin inhibition and DNA interaction. Targeting multiple pathways could delay the development of clinical resistance.
- Full Text:
- Date Issued: 2020
- Authors: Mbaba, Mziyanda , Dingle, Laura M K , Swart, Tarryn , Cash, Devon , Laming, Dustin , de la Mare, Jo-Anne , Taylor, Dale , Hoppe, Heinrich C , Biot, Christophe , Edkins, Adrienne L , Khanye, Setshaba D
- Date: 2020
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/149347 , vital:38827 , https://0-doi.org.wam.seals.ac.za/10.1002/cbic.202000132
- Description: Compounds incorporating ferrocene in a aminocresol scaffold showed antiplasmodial and anticancer activity. SAR studies revealed that an OH group and rotatable C–NH bond are vital for biological activity, with spectrophotometric techniques and docking simulations suggesting a dual mode of action involving hemozoin inhibition and DNA interaction. Targeting multiple pathways could delay the development of clinical resistance.
- Full Text:
- Date Issued: 2020
- «
- ‹
- 1
- ›
- »