Biology and rearing of Ectomyeolis ceratoniae Zeller (Lepidoptera: Pyralidae) carob moth, a pest of multiple crops in South Africa
- Thackeray, Sean R, Moore, Sean D, Strathie, Lorraine W, Kirkman, Wayne, Hill, Martin P
- Authors: Thackeray, Sean R , Moore, Sean D , Strathie, Lorraine W , Kirkman, Wayne , Hill, Martin P
- Date: 2017
- Language: English
- Type: article , text
- Identifier: http://hdl.handle.net/10962/59799 , vital:27652 , https://doi.org/10.4001/003.025.0474
- Description: Ectomyeolis ceratoniae Zeller (Lepidoptera: Pyralidae), carob moth, is a pest of several crops in South Africa. A laboratory culture was established from field-collected larvae infesting mummified pecan nuts. Biological parameters of larvae reared on an artificial diet were measured. The insect goes through five larval instars, and the head capsule sizes of the five instars were determined to be <0.34 mm, 0.35-0.64 mm, 0.65-0.94 mm, 0.95-1.14 mm and >0.15 mm for the five instars, respectively. The insect was reared individually and communally in glass vials, the latter to develop a mass-rearing technique. Developmental time from neonate to pupa was significantly slower when larvae were individually reared (38.18 ±1.2 days) compared to when they were communally reared (24.6 ± 0.65 days). A microsporidian infection (Nosema sp.) was recorded in the culture, causing significantly (fy6 = 14.99, P = 0.0082) higher mortality of communally reared larvae (76.25 % ± 11.87) than individually reared larvae (24.9 % ± 9.6).
- Full Text:
- Authors: Thackeray, Sean R , Moore, Sean D , Strathie, Lorraine W , Kirkman, Wayne , Hill, Martin P
- Date: 2017
- Language: English
- Type: article , text
- Identifier: http://hdl.handle.net/10962/59799 , vital:27652 , https://doi.org/10.4001/003.025.0474
- Description: Ectomyeolis ceratoniae Zeller (Lepidoptera: Pyralidae), carob moth, is a pest of several crops in South Africa. A laboratory culture was established from field-collected larvae infesting mummified pecan nuts. Biological parameters of larvae reared on an artificial diet were measured. The insect goes through five larval instars, and the head capsule sizes of the five instars were determined to be <0.34 mm, 0.35-0.64 mm, 0.65-0.94 mm, 0.95-1.14 mm and >0.15 mm for the five instars, respectively. The insect was reared individually and communally in glass vials, the latter to develop a mass-rearing technique. Developmental time from neonate to pupa was significantly slower when larvae were individually reared (38.18 ±1.2 days) compared to when they were communally reared (24.6 ± 0.65 days). A microsporidian infection (Nosema sp.) was recorded in the culture, causing significantly (fy6 = 14.99, P = 0.0082) higher mortality of communally reared larvae (76.25 % ± 11.87) than individually reared larvae (24.9 % ± 9.6).
- Full Text:
Isolation, identification and genetic characterisation of a microsporidium isolated from carob moth, Ectomyelois ceratoniae (Zeller) (Lepidoptera: Pyralidae)
- Lloyd, Melissa, Knox, Caroline M, Hill, Martin P, Moore, Sean D, Thackeray, Sean R
- Authors: Lloyd, Melissa , Knox, Caroline M , Hill, Martin P , Moore, Sean D , Thackeray, Sean R
- Date: 2017
- Language: English
- Type: article , text
- Identifier: http://hdl.handle.net/10962/59874 , vital:27674 , https://doi.org/10.4001/003.025.0529
- Description: 'Microsporidia' is a term used for organisms belonging to the phylum Microspora, which contains approximately 187 genera and 1500 species (Corradi 2015). They are obligate intracellular parasites with no active metabolic stages of the life cycle occurring outside of the host cells (Franzen & Muller 1999; Garcia 2002; Tsai et al. 2003; Huang et al. 2004). They exhibit eukaryotic characteristics such as a membrane-bound nucleus, an intracytoplasmic membrane system, and chromosome separation occurs on mitotic spindles. However, they also exhibit prokaryotic characteristics such as possession of a 70S ribosome, lack of true mitochondria and peroxisomes, a simple version of the Golgi apparatus, and a small genome which is much less complex than those of most eukaryotes (Franzen & Muller 1999; Garcia 2002). Microspo- ridia are parasitic in all major groups of animals, both vertebrates and invertebrates (Sprague 1977; Franzen & Muller 1999). Microsporidia were first recognised as pathogens in silkworms by Nageli (1857), and now have been found to infect many hosts such as humans, insects, fish and mammals (Stentiford et al. 2016).
- Full Text:
- Authors: Lloyd, Melissa , Knox, Caroline M , Hill, Martin P , Moore, Sean D , Thackeray, Sean R
- Date: 2017
- Language: English
- Type: article , text
- Identifier: http://hdl.handle.net/10962/59874 , vital:27674 , https://doi.org/10.4001/003.025.0529
- Description: 'Microsporidia' is a term used for organisms belonging to the phylum Microspora, which contains approximately 187 genera and 1500 species (Corradi 2015). They are obligate intracellular parasites with no active metabolic stages of the life cycle occurring outside of the host cells (Franzen & Muller 1999; Garcia 2002; Tsai et al. 2003; Huang et al. 2004). They exhibit eukaryotic characteristics such as a membrane-bound nucleus, an intracytoplasmic membrane system, and chromosome separation occurs on mitotic spindles. However, they also exhibit prokaryotic characteristics such as possession of a 70S ribosome, lack of true mitochondria and peroxisomes, a simple version of the Golgi apparatus, and a small genome which is much less complex than those of most eukaryotes (Franzen & Muller 1999; Garcia 2002). Microspo- ridia are parasitic in all major groups of animals, both vertebrates and invertebrates (Sprague 1977; Franzen & Muller 1999). Microsporidia were first recognised as pathogens in silkworms by Nageli (1857), and now have been found to infect many hosts such as humans, insects, fish and mammals (Stentiford et al. 2016).
- Full Text:
Potential of entomopathogenic fungal isolates for Control of the soil-dwelling life stages of Thaumatotibia leucotreta Meyrick (Lepidoptera: Tortricidae) in citrus
- Coombes, Candice A, Hill, Martin P, Dames, Joanna F, Moore, Sean D
- Authors: Coombes, Candice A , Hill, Martin P , Dames, Joanna F , Moore, Sean D
- Date: 2017
- Language: English
- Type: article , text
- Identifier: http://hdl.handle.net/10962/59885 , vital:27684 , https://doi.org/10.4001/003.025.0235
- Description: Thaumatotibia leucotreta Meyrick (Lepidoptera: Tortricidae) is a key pest of citrus in South Africa. In addition to the fruit damage caused, export markets such as the United States, South Korea and China regulate T. leucotreta as a phytosanitary organism in addition to restricting the use of pesticides on exported fruit (Grout & Moore 2015; SA-DAFF 2015). The bulk of citrus in South Africa is exported (Citrus Growers' Association 2015). Thus, the control of T. leucotreta is crucial. Consequently, the citrus industry adopts a zero tolerance approach controlling the pest, being strongly reliant on integrated pest management (Moore & Hattingh 2012). Numerous control options are available, but are largely limited to use against the above-ground life stages of this pest: eggs, neonates and adults (Moore & Hattingh 2012; Grout & Moore 2015).
- Full Text:
- Authors: Coombes, Candice A , Hill, Martin P , Dames, Joanna F , Moore, Sean D
- Date: 2017
- Language: English
- Type: article , text
- Identifier: http://hdl.handle.net/10962/59885 , vital:27684 , https://doi.org/10.4001/003.025.0235
- Description: Thaumatotibia leucotreta Meyrick (Lepidoptera: Tortricidae) is a key pest of citrus in South Africa. In addition to the fruit damage caused, export markets such as the United States, South Korea and China regulate T. leucotreta as a phytosanitary organism in addition to restricting the use of pesticides on exported fruit (Grout & Moore 2015; SA-DAFF 2015). The bulk of citrus in South Africa is exported (Citrus Growers' Association 2015). Thus, the control of T. leucotreta is crucial. Consequently, the citrus industry adopts a zero tolerance approach controlling the pest, being strongly reliant on integrated pest management (Moore & Hattingh 2012). Numerous control options are available, but are largely limited to use against the above-ground life stages of this pest: eggs, neonates and adults (Moore & Hattingh 2012; Grout & Moore 2015).
- Full Text:
- «
- ‹
- 1
- ›
- »