Karyology of three evolutionarily hexaploid southern African species of yellowfish, Labeobarbus Rüppel, 1836 (Cyprinidae)
- Naran, Daksha, Skelton, Paul H, Villet, Martin H
- Authors: Naran, Daksha , Skelton, Paul H , Villet, Martin H
- Date: 2007
- Language: English
- Type: Article
- Identifier: vital:6855 , http://hdl.handle.net/10962/d1011138 , http://dx.doi.org/10.3377/1562-7020(2007)42[254:KOTEHS]2.0.CO;2
- Description: The karyotypes of three species of yellowfish, namely Labeobarbus marequensis (A. Smith, 1841), L. capensis (A. Smith, 1841) and L. polylepis (Boulenger, 1907), were examined by Giemsa staining using an approach improved for the description of high chromosome numbers. In each case, 2n = 150; no heteromorphic chromosomes were detected; chromosomes in all morphological categories ranged smoothly from large to small, with no distinctly large submetacentric pairs; and metacentric chromosomes showed little variation in size. Labeobarbus marequensis had 26 metacentric (m), 44 submetacentric (sm), 42 subtelocentric (st) and 38 acrocentric (a) chromosomes and a fundamental number (FN) of 262; L. capensis had 16 m, 58 sm, 42 st and 34 a chromosomes and FN = 266; and L. polylepis had 18 m, 60 sm, 42 st and 30 a chromosomes and FN = 270. These results, combined with published literature, imply that Labeobarbus Rüppel, 1836 is an evolutionarily hexaploid African lineage and support its removal from synonymy with the evolutionarily tetraploid Asian genus Tor Gray, 1834. A review of fundamental numbers for conspecific Labeobarbus species examined in different studies implicated karyological technique as a confounding factor in assessing details of karyotypes, leading to recommendations for future karyological studies of barbine fishes. Potential synapomorphies are pointed out in karyological characters of species within Labeobarbus.
- Full Text:
- Authors: Naran, Daksha , Skelton, Paul H , Villet, Martin H
- Date: 2007
- Language: English
- Type: Article
- Identifier: vital:6855 , http://hdl.handle.net/10962/d1011138 , http://dx.doi.org/10.3377/1562-7020(2007)42[254:KOTEHS]2.0.CO;2
- Description: The karyotypes of three species of yellowfish, namely Labeobarbus marequensis (A. Smith, 1841), L. capensis (A. Smith, 1841) and L. polylepis (Boulenger, 1907), were examined by Giemsa staining using an approach improved for the description of high chromosome numbers. In each case, 2n = 150; no heteromorphic chromosomes were detected; chromosomes in all morphological categories ranged smoothly from large to small, with no distinctly large submetacentric pairs; and metacentric chromosomes showed little variation in size. Labeobarbus marequensis had 26 metacentric (m), 44 submetacentric (sm), 42 subtelocentric (st) and 38 acrocentric (a) chromosomes and a fundamental number (FN) of 262; L. capensis had 16 m, 58 sm, 42 st and 34 a chromosomes and FN = 266; and L. polylepis had 18 m, 60 sm, 42 st and 30 a chromosomes and FN = 270. These results, combined with published literature, imply that Labeobarbus Rüppel, 1836 is an evolutionarily hexaploid African lineage and support its removal from synonymy with the evolutionarily tetraploid Asian genus Tor Gray, 1834. A review of fundamental numbers for conspecific Labeobarbus species examined in different studies implicated karyological technique as a confounding factor in assessing details of karyotypes, leading to recommendations for future karyological studies of barbine fishes. Potential synapomorphies are pointed out in karyological characters of species within Labeobarbus.
- Full Text:
Karyology of the redfin minnows, genus Pseudobarbus Smith, 1841 (Teleostei: Cyprinidae): one of the evolutionarily tetraploid lineages of South African barbines
- Naran, Daksha, Skelton, Paul H, Villet, Martin H
- Authors: Naran, Daksha , Skelton, Paul H , Villet, Martin H
- Date: 2006
- Language: English
- Type: Article
- Identifier: vital:6770 , http://hdl.handle.net/10962/d1008063
- Description: The karyotypes of six species of Pseudobarbus Smith, 1841, namely P. afer (Peters, 1864), P. asper (Boulenger, 1911), P. burchelli Smith, 1841, P. burgi (Boulenger, 1911), P. phlegethon (Barnard, 1938) and P. tenuis (Barnard, 1938), were examined by conventional Giemsa staining and described. All six karyotypes have 2n = 100 chromosomes, dominated by biarmed chromosomes, as does the only other member of the genus, P. quathlambae (Barnard, 1938). Sex-related intraspecific karyotype variation was not found. The shared chromosome numbers and general similarity of the karyotypes (FN = 186–192) provide a new synapomorphy to support their monophyly, which is already indicated by anatomical and mtDNA markers. Karyotype evolution within the genus has been accompanied by chromosomal inversions and centromeric shifts. Comparison of the diploid number found in Pseudobarbus with other African barbine cyprinines, which have in the region of 2n=50 and lower FNs, suggests a tetraploid evolutionary origin of the genus, possibly by allotetraploidy.
- Full Text:
- Authors: Naran, Daksha , Skelton, Paul H , Villet, Martin H
- Date: 2006
- Language: English
- Type: Article
- Identifier: vital:6770 , http://hdl.handle.net/10962/d1008063
- Description: The karyotypes of six species of Pseudobarbus Smith, 1841, namely P. afer (Peters, 1864), P. asper (Boulenger, 1911), P. burchelli Smith, 1841, P. burgi (Boulenger, 1911), P. phlegethon (Barnard, 1938) and P. tenuis (Barnard, 1938), were examined by conventional Giemsa staining and described. All six karyotypes have 2n = 100 chromosomes, dominated by biarmed chromosomes, as does the only other member of the genus, P. quathlambae (Barnard, 1938). Sex-related intraspecific karyotype variation was not found. The shared chromosome numbers and general similarity of the karyotypes (FN = 186–192) provide a new synapomorphy to support their monophyly, which is already indicated by anatomical and mtDNA markers. Karyotype evolution within the genus has been accompanied by chromosomal inversions and centromeric shifts. Comparison of the diploid number found in Pseudobarbus with other African barbine cyprinines, which have in the region of 2n=50 and lower FNs, suggests a tetraploid evolutionary origin of the genus, possibly by allotetraploidy.
- Full Text:
- «
- ‹
- 1
- ›
- »