Conjugation of isoniazid to a zinc phthalocyanine via hydrazone linkage for pH-dependent liposomal controlled release
- Nkanga, Christian I, Krause, Rui W M
- Authors: Nkanga, Christian I , Krause, Rui W M
- Date: 2018
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/194992 , vital:45517 , xlink:href="https://doi.org/10.1007/s13204-018-0776-y"
- Description: Tuberculosis (TB) remains the leading cause of mortality from infectious diseases. Extended TB treatment and frequent adverse effects, due to poor bioavailability of anti-tubercular drugs (ATBDs), represent the main rationales behind liposomal encapsulation for controlled delivery. Liposomes have been reported as potential vehicles for targeted delivery of ATBDs due to their rapid uptake by macrophages, which are known as the main host cells for TB causative agent (Mycobacterium tuberculosis). Additionally, the need for controlled release of ATBDs arises because leakage is part of the key liposome challenges for hydrophilic compounds like isoniazid (INH). In this study, INH was conjugated to a highly hydrophobic photosensitizer, zinc (II) phthalocyanine (PC), through hydrazone bonding. The obtained conjugate (PC–INH) was encapsulated in liposomes by film hydration method. PC–INH loaded liposomes (PILs) were characterized using dynamic light scattering, transmission electron microscopy, energy-dispersive X-ray spectrometry and UV–Vis absorption spectrometry, which was used also for estimation of encapsulation efficiency (î). INH release was evaluated in different pH media using dialysis. Particle size, zeta potential and î of PILs were about 506 nm, − 55 mV and 72%, respectively. Over 12 h, PILs exhibited 22, 41, 97 and 100% of INH, respectively, released in pH 7.4, 6.4, 5.4 and 4.4 media. This pH-dependent behavior is attractive for site-specific delivery. These findings suggest the conjugation of chemotherapeutics to phthalocyanines using pH-labile linkages as a potential strategy for liposomal controlled release.
- Full Text:
- Authors: Nkanga, Christian I , Krause, Rui W M
- Date: 2018
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/194992 , vital:45517 , xlink:href="https://doi.org/10.1007/s13204-018-0776-y"
- Description: Tuberculosis (TB) remains the leading cause of mortality from infectious diseases. Extended TB treatment and frequent adverse effects, due to poor bioavailability of anti-tubercular drugs (ATBDs), represent the main rationales behind liposomal encapsulation for controlled delivery. Liposomes have been reported as potential vehicles for targeted delivery of ATBDs due to their rapid uptake by macrophages, which are known as the main host cells for TB causative agent (Mycobacterium tuberculosis). Additionally, the need for controlled release of ATBDs arises because leakage is part of the key liposome challenges for hydrophilic compounds like isoniazid (INH). In this study, INH was conjugated to a highly hydrophobic photosensitizer, zinc (II) phthalocyanine (PC), through hydrazone bonding. The obtained conjugate (PC–INH) was encapsulated in liposomes by film hydration method. PC–INH loaded liposomes (PILs) were characterized using dynamic light scattering, transmission electron microscopy, energy-dispersive X-ray spectrometry and UV–Vis absorption spectrometry, which was used also for estimation of encapsulation efficiency (î). INH release was evaluated in different pH media using dialysis. Particle size, zeta potential and î of PILs were about 506 nm, − 55 mV and 72%, respectively. Over 12 h, PILs exhibited 22, 41, 97 and 100% of INH, respectively, released in pH 7.4, 6.4, 5.4 and 4.4 media. This pH-dependent behavior is attractive for site-specific delivery. These findings suggest the conjugation of chemotherapeutics to phthalocyanines using pH-labile linkages as a potential strategy for liposomal controlled release.
- Full Text:
pH-Dependent release of isoniazid from isonicotinic acid (4-hydroxy-benzylidene)-hydrazide loaded liposomes
- Nkanga, Christian I, Tor-Anyiin, Terrumun A, Igoli, John O, Noundou, Xavier S, Krause, Rui W M
- Authors: Nkanga, Christian I , Tor-Anyiin, Terrumun A , Igoli, John O , Noundou, Xavier S , Krause, Rui W M
- Date: 2018
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/126427 , vital:35884 , https://doi.org/10.9734/AJOCS/2017/37147
- Description: Liposomes are considered as potential vehicles for the delivery of anti-tuberculosis drugs (ATBD) due to their rapid uptake by alveolar macrophages, where the mycobacterium often resides. This may provide macrophage-targeting effects that would be key to site specific ATBD delivery using pH-sensitive liposomes, considering the pH-gradient found in the phagocytotic pathway. In this study, isoniazid (INH) was conjugated to 4-hydroxy-benzaldehyde via a hydrazone bond to yield isonicotinic acid (4-hydroxy-benzylidene)-hydrazide (INH-HB). This conjugate was encapsulated in crude soybean lecithin liposomes using film hydration method. INH-HB loaded liposomes (IHL) were characterized by means of dynamic light scattering, transmission electron microscopy, differential scanning calorimetry and X-ray diffraction. The release of INH from IHL was evaluated in media of different pH using a dialysis method. The particle size, Zeta Potential and encapsulation efficiency of IHL were about 945 nm, −62 mV and 89% respectively. In media of pH 7.4, 6.4, 5.4 and 4.4; the IHL exhibited respectively 22, 69, 83 and 100% of release over 12 h. In addition to possible targeted delivery, this pH-dependent release behavior may be suitable for minimizing the loss of INH by leakage from liposomes. The characteristics of IHL are promising for potential site-specific delivery of ATBD.
- Full Text:
- Authors: Nkanga, Christian I , Tor-Anyiin, Terrumun A , Igoli, John O , Noundou, Xavier S , Krause, Rui W M
- Date: 2018
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/126427 , vital:35884 , https://doi.org/10.9734/AJOCS/2017/37147
- Description: Liposomes are considered as potential vehicles for the delivery of anti-tuberculosis drugs (ATBD) due to their rapid uptake by alveolar macrophages, where the mycobacterium often resides. This may provide macrophage-targeting effects that would be key to site specific ATBD delivery using pH-sensitive liposomes, considering the pH-gradient found in the phagocytotic pathway. In this study, isoniazid (INH) was conjugated to 4-hydroxy-benzaldehyde via a hydrazone bond to yield isonicotinic acid (4-hydroxy-benzylidene)-hydrazide (INH-HB). This conjugate was encapsulated in crude soybean lecithin liposomes using film hydration method. INH-HB loaded liposomes (IHL) were characterized by means of dynamic light scattering, transmission electron microscopy, differential scanning calorimetry and X-ray diffraction. The release of INH from IHL was evaluated in media of different pH using a dialysis method. The particle size, Zeta Potential and encapsulation efficiency of IHL were about 945 nm, −62 mV and 89% respectively. In media of pH 7.4, 6.4, 5.4 and 4.4; the IHL exhibited respectively 22, 69, 83 and 100% of release over 12 h. In addition to possible targeted delivery, this pH-dependent release behavior may be suitable for minimizing the loss of INH by leakage from liposomes. The characteristics of IHL are promising for potential site-specific delivery of ATBD.
- Full Text:
- «
- ‹
- 1
- ›
- »