Electrocatalytic activity of a push pull Co (II) phthalocyanine in the presence of graphitic carbon nitride quantum dots
- Nxele, Siphesihle R, Oluwole, David O, Nyokong, Tebello
- Authors: Nxele, Siphesihle R , Oluwole, David O , Nyokong, Tebello
- Date: 2019
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/186746 , vital:44530 , xlink:href="https://doi.org/10.1016/j.electacta.2019.134978"
- Description: This work reports for the first time on the use of a conjugate of graphitic carbon nitride quantum dots (gCNQDs) with a push-pull asymmetrical cobalt phthalocyanine (CoPc) for electrochemical sensing. The nanocomposite is immobilized on a glassy carbon electrode (GCE) surface for the use in l-cysteine electrocatalysis. The nanocomposites were characterized using techniques such as X-ray diffractometry (XRD), Fourier transform infrared (FTIR) spectroscopy, UV-vis spectroscopy, transmission electron microscopy (TEM), energy dispersive X-ray (EDX) analysis, Raman spectroscopy and electrochemical methods. The nanocomposites were immobilized by the drop-dry method, sequentially or when premixed in solution. Good electrocatalytic oxidation of l-cysteine was observed, especially by the sequentially modified electrode surface, with the CoPc on top of gCNQDs. The sensitivity was determined as 3.5 μA.mM-1 and the limit of detection (LoD) as 101.3 μM for GCE-gCNQDs, 0.65 μA.mM-1 and 0.96 μM for GCE-CoPc, 23.41 μA.mM-1 and 0.41 μM for gCNQDs-CoPc (premixed) and 100.5 μA.mM-1 and 0.02 μM for gCNQDs-CoPc (sequential). The electrode surfaces also showed high stability by continuous cyclization.
- Full Text:
- Authors: Nxele, Siphesihle R , Oluwole, David O , Nyokong, Tebello
- Date: 2019
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/186746 , vital:44530 , xlink:href="https://doi.org/10.1016/j.electacta.2019.134978"
- Description: This work reports for the first time on the use of a conjugate of graphitic carbon nitride quantum dots (gCNQDs) with a push-pull asymmetrical cobalt phthalocyanine (CoPc) for electrochemical sensing. The nanocomposite is immobilized on a glassy carbon electrode (GCE) surface for the use in l-cysteine electrocatalysis. The nanocomposites were characterized using techniques such as X-ray diffractometry (XRD), Fourier transform infrared (FTIR) spectroscopy, UV-vis spectroscopy, transmission electron microscopy (TEM), energy dispersive X-ray (EDX) analysis, Raman spectroscopy and electrochemical methods. The nanocomposites were immobilized by the drop-dry method, sequentially or when premixed in solution. Good electrocatalytic oxidation of l-cysteine was observed, especially by the sequentially modified electrode surface, with the CoPc on top of gCNQDs. The sensitivity was determined as 3.5 μA.mM-1 and the limit of detection (LoD) as 101.3 μM for GCE-gCNQDs, 0.65 μA.mM-1 and 0.96 μM for GCE-CoPc, 23.41 μA.mM-1 and 0.41 μM for gCNQDs-CoPc (premixed) and 100.5 μA.mM-1 and 0.02 μM for gCNQDs-CoPc (sequential). The electrode surfaces also showed high stability by continuous cyclization.
- Full Text:
Photophysicochemical properties of nanoconjugates of zinc (II) 2 (3)-mono-2-(4-oxy) phenoxy) acetic acid phthalocyanine with cysteamine capped silver and silver–gold nanoparticles
- Oluwole, David O, Prinsloo, Earl, Nyokong, Tebello
- Authors: Oluwole, David O , Prinsloo, Earl , Nyokong, Tebello
- Date: 2016
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/188552 , vital:44764 , xlink:href="https://doi.org/10.1016/j.poly.2016.09.034"
- Description: A novel asymmetrical zinc(II) 2(3)-mono-2-(4-oxy)phenoxy)acetic acid phthalocyanine (complex 1) was synthesized and subsequently linked to cysteamine capped silver (AgNPs) and silver–gold (AgAuNPs) nanoparticles (NPs) via amide bonds. The photophysicochemical properties and in vitro photodynamic therapy activity of complex 1 and its nanoconjugates were investigated. The nanoconjugates showed improved photophysical properties compared to complex 1 alone. The fluorescence, triplet and singlet quantum yields of complex 1 were found to be 20%, 48%, and 43% respectively. Complex 1 showed in vitro dark cytotoxicity, but the dark toxicity was reduced for the combination of complex 1 with AgAuNPs, this combination also gave the best photodynamic therapy activity when compared to complex 1 and its conjugate with AgNPs without AuNPs.
- Full Text:
- Authors: Oluwole, David O , Prinsloo, Earl , Nyokong, Tebello
- Date: 2016
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/188552 , vital:44764 , xlink:href="https://doi.org/10.1016/j.poly.2016.09.034"
- Description: A novel asymmetrical zinc(II) 2(3)-mono-2-(4-oxy)phenoxy)acetic acid phthalocyanine (complex 1) was synthesized and subsequently linked to cysteamine capped silver (AgNPs) and silver–gold (AgAuNPs) nanoparticles (NPs) via amide bonds. The photophysicochemical properties and in vitro photodynamic therapy activity of complex 1 and its nanoconjugates were investigated. The nanoconjugates showed improved photophysical properties compared to complex 1 alone. The fluorescence, triplet and singlet quantum yields of complex 1 were found to be 20%, 48%, and 43% respectively. Complex 1 showed in vitro dark cytotoxicity, but the dark toxicity was reduced for the combination of complex 1 with AgAuNPs, this combination also gave the best photodynamic therapy activity when compared to complex 1 and its conjugate with AgNPs without AuNPs.
- Full Text:
- «
- ‹
- 1
- ›
- »