Hsp90α/β associates with the GSK3β/axin1/phospho-β-catenin complex in the human MCF-7 epithelial breast cancer model:
- Cooper, Leanne C, Prinsloo, Earl, Edkins, Adrienne L, Blatch, Gregory L
- Authors: Cooper, Leanne C , Prinsloo, Earl , Edkins, Adrienne L , Blatch, Gregory L
- Date: 2011
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/165096 , vital:41208 , DOI: 10.1016/j.bbrc.2011.08.136
- Description: Hsp90α/β, the signal transduction chaperone, maintains intracellular communication in normal, stem, and cancer cells. The well characterised association of Hsp90α/β with its client kinases form the framework of multiple signalling networks. GSK3β, a known Hsp90α/β client, mediates β-catenin phosphorylation as part of a cytoplasmic destruction complex which targets phospho-β-catenin to the 26S proteasome. The canonical Wnt/β-catenin pathway promotes stem cell self-renewal as well as oncogenesis. The degree of Hsp90α/β involvement in Wnt/β-catenin signalling needs clarification. Here, we describe the association of Hsp90α/β with GSK3β, β-catenin, phospho-β-catenin and the molecular scaffold, axin1, in the human MCF-7 epithelial breast cancer cell model using selective inhibition of Hsp90α/β, confocal laser scanning microscopy and immunoprecipitation. Our findings suggest that Hsp90α/β modulates the phosphorylation of β-catenin by interaction in common complex with GSK3β/axin1/β-catenin.
- Full Text:
- Date Issued: 2011
- Authors: Cooper, Leanne C , Prinsloo, Earl , Edkins, Adrienne L , Blatch, Gregory L
- Date: 2011
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/165096 , vital:41208 , DOI: 10.1016/j.bbrc.2011.08.136
- Description: Hsp90α/β, the signal transduction chaperone, maintains intracellular communication in normal, stem, and cancer cells. The well characterised association of Hsp90α/β with its client kinases form the framework of multiple signalling networks. GSK3β, a known Hsp90α/β client, mediates β-catenin phosphorylation as part of a cytoplasmic destruction complex which targets phospho-β-catenin to the 26S proteasome. The canonical Wnt/β-catenin pathway promotes stem cell self-renewal as well as oncogenesis. The degree of Hsp90α/β involvement in Wnt/β-catenin signalling needs clarification. Here, we describe the association of Hsp90α/β with GSK3β, β-catenin, phospho-β-catenin and the molecular scaffold, axin1, in the human MCF-7 epithelial breast cancer cell model using selective inhibition of Hsp90α/β, confocal laser scanning microscopy and immunoprecipitation. Our findings suggest that Hsp90α/β modulates the phosphorylation of β-catenin by interaction in common complex with GSK3β/axin1/β-catenin.
- Full Text:
- Date Issued: 2011
The PINIT domain of PIAS3: structure-function analysis of its interaction with STAT3
- Mautsa, Nicodemus, Prinsloo, Earl, Tastan Bishop, Özlem, Blatch, Gregory L
- Authors: Mautsa, Nicodemus , Prinsloo, Earl , Tastan Bishop, Özlem , Blatch, Gregory L
- Date: 2011
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/148082 , vital:38708 , DOI: 10.1002/jmr.1111
- Description: The protein inhibitor of activated signal transducer and activator of transcription 3 (PIAS3) regulates the transcriptional activity of signal transducer and activator of transcription 3 (STAT3) which regulates transcription of genes involved in cell growth, proliferation and apoptosis. The conserved proline, isoleucine, asparagine, isoleucine, threonine (PINIT) domain of PIAS3 is thought to promote STAT3–PIAS3 interaction.
- Full Text:
- Date Issued: 2011
- Authors: Mautsa, Nicodemus , Prinsloo, Earl , Tastan Bishop, Özlem , Blatch, Gregory L
- Date: 2011
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/148082 , vital:38708 , DOI: 10.1002/jmr.1111
- Description: The protein inhibitor of activated signal transducer and activator of transcription 3 (PIAS3) regulates the transcriptional activity of signal transducer and activator of transcription 3 (STAT3) which regulates transcription of genes involved in cell growth, proliferation and apoptosis. The conserved proline, isoleucine, asparagine, isoleucine, threonine (PINIT) domain of PIAS3 is thought to promote STAT3–PIAS3 interaction.
- Full Text:
- Date Issued: 2011
- «
- ‹
- 1
- ›
- »