A gold–chitosan composite with low symmetry zinc phthalocyanine for enhanced singlet oxygen generation and improved photodynamic therapy activity
- Dube, Edith, Oluwole, David O, Prinsloo, Earl, Nyokong, Tebello
- Authors: Dube, Edith , Oluwole, David O , Prinsloo, Earl , Nyokong, Tebello
- Date: 2018
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/233397 , vital:50087 , xlink:href="https://doi.org/10.1039/C8NJ00801A"
- Description: Novel zinc(II) 3-(4-((3,17,23-tris(4-(benzo[d]thiazol-2-yl)phenoxy)phthalocyanine-9-yl)oxy)phenyl)propanoic acid (complex 3) was synthesised. Complex 3 was subsequently reacted with gold nanoparticles (AuNPs), chitosan (CT) and a gold–chitosan (AuCT) hybrid to form 3-AuNPs, 3-CT and 3-AuCT, respectively. The conjugates afforded a decrease in fluorescence quantum yield with a corresponding increase in the triplet and singlet quantum yields compared to complex 3. The in vitro dark cytotoxicity and photodynamic therapy activity (PDT) of complex 3 and 3-AuCT composites were investigated against epithelial breast cancer cells (MCF-7) with both the samples showing minimum dark cytotoxicity. They both accounted for a cell viability of ≥90% at a concentration of ≤59.2 μg mL−1. 3-AuCT showed better PDT activity (compared to 3 alone) with less than 50% viable cells at a concentration of ≥29.6 μg mL−1 making it potentially applicable for PDT. On the other hand, AuCT displayed some activity against cancer cells, probably due to photothermal activity since gold is a light absorber, however it had more than 50% viable cells at a concentration of ≤59.2 μg mL−1.
- Full Text:
- Date Issued: 2018
- Authors: Dube, Edith , Oluwole, David O , Prinsloo, Earl , Nyokong, Tebello
- Date: 2018
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/233397 , vital:50087 , xlink:href="https://doi.org/10.1039/C8NJ00801A"
- Description: Novel zinc(II) 3-(4-((3,17,23-tris(4-(benzo[d]thiazol-2-yl)phenoxy)phthalocyanine-9-yl)oxy)phenyl)propanoic acid (complex 3) was synthesised. Complex 3 was subsequently reacted with gold nanoparticles (AuNPs), chitosan (CT) and a gold–chitosan (AuCT) hybrid to form 3-AuNPs, 3-CT and 3-AuCT, respectively. The conjugates afforded a decrease in fluorescence quantum yield with a corresponding increase in the triplet and singlet quantum yields compared to complex 3. The in vitro dark cytotoxicity and photodynamic therapy activity (PDT) of complex 3 and 3-AuCT composites were investigated against epithelial breast cancer cells (MCF-7) with both the samples showing minimum dark cytotoxicity. They both accounted for a cell viability of ≥90% at a concentration of ≤59.2 μg mL−1. 3-AuCT showed better PDT activity (compared to 3 alone) with less than 50% viable cells at a concentration of ≥29.6 μg mL−1 making it potentially applicable for PDT. On the other hand, AuCT displayed some activity against cancer cells, probably due to photothermal activity since gold is a light absorber, however it had more than 50% viable cells at a concentration of ≤59.2 μg mL−1.
- Full Text:
- Date Issued: 2018
Effect of number of positive charges on the photophysical and photodynamic therapy activities of quarternary benzothiazole substituted zinc phthalocyanine
- Matshitse, Refilwe, Nwaji, Njemuwa, Mananga, Muthumuni, Prinsloo, Earl, Nyokong, Tebello
- Authors: Matshitse, Refilwe , Nwaji, Njemuwa , Mananga, Muthumuni , Prinsloo, Earl , Nyokong, Tebello
- Date: 2018
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/187819 , vital:44700 , xlink:href="https://doi.org/10.1016/j.jphotochem.2018.08.033"
- Description: The synthesis, photophysicochemical and photodynamic therapy (PDT) activity of quaternary benzothiazole substituted zinc phthalocyanine (2, containing two charges, and 3, containing four charges) are reported in this work. Furthermore, the activity of the synthesized complex was compared to non-quaternary derivative (1). Higher triplet and singlet oxygen quantum yields of 0.92 and 0.85, respectively, for quaternized complexes 2 and 3 compared to complex 1 alone. Complexes 1, 2 and 3 showed relatively no dark toxicity against the epithelial breast cancer cells with cell survival of above 90 ± 3%. The quaternary derivatives (2 and 3) showed superior PDT activity with 30% or less of viable cells at concentration of 50.0 μg/mL in comparison to complex 1 alone which further lay credence to the importance of quaternization in the enhancement of PDT activity.
- Full Text:
- Date Issued: 2018
- Authors: Matshitse, Refilwe , Nwaji, Njemuwa , Mananga, Muthumuni , Prinsloo, Earl , Nyokong, Tebello
- Date: 2018
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/187819 , vital:44700 , xlink:href="https://doi.org/10.1016/j.jphotochem.2018.08.033"
- Description: The synthesis, photophysicochemical and photodynamic therapy (PDT) activity of quaternary benzothiazole substituted zinc phthalocyanine (2, containing two charges, and 3, containing four charges) are reported in this work. Furthermore, the activity of the synthesized complex was compared to non-quaternary derivative (1). Higher triplet and singlet oxygen quantum yields of 0.92 and 0.85, respectively, for quaternized complexes 2 and 3 compared to complex 1 alone. Complexes 1, 2 and 3 showed relatively no dark toxicity against the epithelial breast cancer cells with cell survival of above 90 ± 3%. The quaternary derivatives (2 and 3) showed superior PDT activity with 30% or less of viable cells at concentration of 50.0 μg/mL in comparison to complex 1 alone which further lay credence to the importance of quaternization in the enhancement of PDT activity.
- Full Text:
- Date Issued: 2018
Effects of Pluronic F127 micelles as delivering agents on the vitro dark toxicity and photodynamic therapy activity of carboxy and pyrene substituted porphyrins
- Managa, Muthumuni, Britton, Jonathan, Prinsloo, Earl, Nyokong, Tebello
- Authors: Managa, Muthumuni , Britton, Jonathan , Prinsloo, Earl , Nyokong, Tebello
- Date: 2018
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/234439 , vital:50196 , xlink:href="https://doi.org/10.1016/j.poly.2018.06.031"
- Description: Metal free, Zn and ClGa containing carboxyphenoxy and phenoxy groups (complexes 1) and pyrene groups (complexes 2) were synthesized and embedded into Pluronic F127 micelles (represented as F127). Dark toxicity and photodynamic therapy activities of the embedded porphyrins were successfully studied on MCF-7 breast cancer cells. Dark toxicity showed more than 80% cell viability for all complexes. It was found that 1-Zn + F127 showed better photodynamic therapy activity compared to 1-H2 + F127, and 1-ClGa + F127, corresponding to the high partition coefficient for the Zn porphyrin derivatives. The same applies to 2-Zn + F127 compared to 2-H2 + F127, 2-ClGa + F127. 1-ClGa and 1-Zn were also linked to Pluronic F127 silica nanoparticles. PDT activities for embedded 1-ClGa + F127 and 1-Zn + F127 were much higher than when linked to Pluronic silica nanoparticles (PluS NPs), showing the importance of loading of porphyrins into Pluronic F127 as a drug delivering agent rather than linking. PDT studies at the highest concentration of 60 µg/ml showed decrease in cell viability down to 15.9% for 2-Zn + F127. The Kp was determined in biphasic octanol and water system.
- Full Text:
- Date Issued: 2018
- Authors: Managa, Muthumuni , Britton, Jonathan , Prinsloo, Earl , Nyokong, Tebello
- Date: 2018
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/234439 , vital:50196 , xlink:href="https://doi.org/10.1016/j.poly.2018.06.031"
- Description: Metal free, Zn and ClGa containing carboxyphenoxy and phenoxy groups (complexes 1) and pyrene groups (complexes 2) were synthesized and embedded into Pluronic F127 micelles (represented as F127). Dark toxicity and photodynamic therapy activities of the embedded porphyrins were successfully studied on MCF-7 breast cancer cells. Dark toxicity showed more than 80% cell viability for all complexes. It was found that 1-Zn + F127 showed better photodynamic therapy activity compared to 1-H2 + F127, and 1-ClGa + F127, corresponding to the high partition coefficient for the Zn porphyrin derivatives. The same applies to 2-Zn + F127 compared to 2-H2 + F127, 2-ClGa + F127. 1-ClGa and 1-Zn were also linked to Pluronic F127 silica nanoparticles. PDT activities for embedded 1-ClGa + F127 and 1-Zn + F127 were much higher than when linked to Pluronic silica nanoparticles (PluS NPs), showing the importance of loading of porphyrins into Pluronic F127 as a drug delivering agent rather than linking. PDT studies at the highest concentration of 60 µg/ml showed decrease in cell viability down to 15.9% for 2-Zn + F127. The Kp was determined in biphasic octanol and water system.
- Full Text:
- Date Issued: 2018
Photodynamic therapy activity of zinc phthalocyanine linked to folic acid and magnetic nanoparticles
- Matlou, Gauta G, Oluwole, David O, Prinsloo, Earl, Nyokong, Tebello
- Authors: Matlou, Gauta G , Oluwole, David O , Prinsloo, Earl , Nyokong, Tebello
- Date: 2018
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/234429 , vital:50195 , xlink:href="https://doi.org/10.1016/j.jphotobiol.2018.07.025"
- Description: In this work, the photodynamic therapy (PDT) activities (using human carcinoma adherent MCF-7 cells) of zinc phthalocyanine derivatives: complexes 1 (Zn mono cinnamic acid phthalocyanine) and 2 (zinc mono carboxyphenoxy phthalocyanine) when covalently linked to folic acid (FA) and amine functionalized magnetic nanoparticles (AMNPs) are reported. The covalent linkage of asymmetric zinc cinnamic acid Pc (1) to FA (1-FA) through an amide bond is reported for the first time. Complex 1 is insoluble in water, but upon linkage to FA, (to form 1-FA) the molecule become water soluble, hence the UV–Vis spectrum and singlet oxygen quantum yield for 1-FA were also done in water since water solubility is essential for biological applications. The reported 2-FA is also water soluble. Linking complexes 1 and 2 to FA and AMNPs decreased the dark toxicity of 1 and 2 on MCF-7 cells. Pc-FA (1-FA and 2-FA) conjugates had better singlet oxygen quantum yields (Φ∆) in DMSO as compared to Pc-AMNPs (1-AMNPs and 2-AMNPs). The water- soluble 1-FA and 2-FA also achieved a better photodynamic therapy (PDT) activity as compared to 1-AMNPs and 2-AMNPs. Folic acid targeting on the tumor cells may have also facilitated better bioavailability of 1-FA and 2-FA and improved PDT activity on MCF-7 cells over AMNPs carriers.
- Full Text:
- Date Issued: 2018
Photodynamic therapy activity of zinc phthalocyanine linked to folic acid and magnetic nanoparticles
- Authors: Matlou, Gauta G , Oluwole, David O , Prinsloo, Earl , Nyokong, Tebello
- Date: 2018
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/234429 , vital:50195 , xlink:href="https://doi.org/10.1016/j.jphotobiol.2018.07.025"
- Description: In this work, the photodynamic therapy (PDT) activities (using human carcinoma adherent MCF-7 cells) of zinc phthalocyanine derivatives: complexes 1 (Zn mono cinnamic acid phthalocyanine) and 2 (zinc mono carboxyphenoxy phthalocyanine) when covalently linked to folic acid (FA) and amine functionalized magnetic nanoparticles (AMNPs) are reported. The covalent linkage of asymmetric zinc cinnamic acid Pc (1) to FA (1-FA) through an amide bond is reported for the first time. Complex 1 is insoluble in water, but upon linkage to FA, (to form 1-FA) the molecule become water soluble, hence the UV–Vis spectrum and singlet oxygen quantum yield for 1-FA were also done in water since water solubility is essential for biological applications. The reported 2-FA is also water soluble. Linking complexes 1 and 2 to FA and AMNPs decreased the dark toxicity of 1 and 2 on MCF-7 cells. Pc-FA (1-FA and 2-FA) conjugates had better singlet oxygen quantum yields (Φ∆) in DMSO as compared to Pc-AMNPs (1-AMNPs and 2-AMNPs). The water- soluble 1-FA and 2-FA also achieved a better photodynamic therapy (PDT) activity as compared to 1-AMNPs and 2-AMNPs. Folic acid targeting on the tumor cells may have also facilitated better bioavailability of 1-FA and 2-FA and improved PDT activity on MCF-7 cells over AMNPs carriers.
- Full Text:
- Date Issued: 2018
Photophysicochemical properties and photodynamic therapy activity of highly water-soluble Zn (II) phthalocyanines
- Oluwole, David O, Sari, Fatma Aslihan, Prinsloo, Earl, Dube, Edith, Yuzer, Abdulcelil, Nyokong, Tebello, Ince, Mine
- Authors: Oluwole, David O , Sari, Fatma Aslihan , Prinsloo, Earl , Dube, Edith , Yuzer, Abdulcelil , Nyokong, Tebello , Ince, Mine
- Date: 2018
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/234507 , vital:50203 , xlink:href="https://doi.org/10.1016/j.saa.2018.05.090"
- Description: The syntheses of two zinc(II) phthalocyanines (ZnPcs) having either imidazole (ZnPc 1) or pyridiloxy (ZnPc 2) moieties as their macrocycle substituents are reported. Quaternization of the ZnPcs with methyl iodide afforded water soluble cationic phthalocyanines. The photophysical, photochemical properties and photodynamic therapy (PDT) activity of the ZnPcs were studied in solution. The fluorescence quantum yield and lifetime of ZnPc 1 were higher as compared to ZnPc 2. ZnPc 2 afforded higher triplet state (ΦT) and singlet oxygen quantum yields (ΦΔ) in comparison to ZnPc 1. The PDT activity of ZnPcs was investigated against human breast adenocarcinoma cells (MCF–7). The two compounds afforded a very minimal in vitro dark cytotoxicity with 85% viable cells at concentration ≤80 μM. On irradiation of the cells having the ZnPcs, ≥50% cell death was recorded for ZnPc 1 which was also evidenced by the cells photo–micrograph.
- Full Text:
- Date Issued: 2018
- Authors: Oluwole, David O , Sari, Fatma Aslihan , Prinsloo, Earl , Dube, Edith , Yuzer, Abdulcelil , Nyokong, Tebello , Ince, Mine
- Date: 2018
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/234507 , vital:50203 , xlink:href="https://doi.org/10.1016/j.saa.2018.05.090"
- Description: The syntheses of two zinc(II) phthalocyanines (ZnPcs) having either imidazole (ZnPc 1) or pyridiloxy (ZnPc 2) moieties as their macrocycle substituents are reported. Quaternization of the ZnPcs with methyl iodide afforded water soluble cationic phthalocyanines. The photophysical, photochemical properties and photodynamic therapy (PDT) activity of the ZnPcs were studied in solution. The fluorescence quantum yield and lifetime of ZnPc 1 were higher as compared to ZnPc 2. ZnPc 2 afforded higher triplet state (ΦT) and singlet oxygen quantum yields (ΦΔ) in comparison to ZnPc 1. The PDT activity of ZnPcs was investigated against human breast adenocarcinoma cells (MCF–7). The two compounds afforded a very minimal in vitro dark cytotoxicity with 85% viable cells at concentration ≤80 μM. On irradiation of the cells having the ZnPcs, ≥50% cell death was recorded for ZnPc 1 which was also evidenced by the cells photo–micrograph.
- Full Text:
- Date Issued: 2018
The investigation of in vitro dark cytotoxicity and photodynamic therapy effect of a 2, 6-dibromo-3, 5-distyryl BODIPY dye encapsulated in Pluronic® F-127 micelles
- Molupe, Nthabeleng, Babu, Balaji, Oluwole, David O, Prinsloo, Earl, Mack, John, Nyokong, Tebello
- Authors: Molupe, Nthabeleng , Babu, Balaji , Oluwole, David O , Prinsloo, Earl , Mack, John , Nyokong, Tebello
- Date: 2018
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/187862 , vital:44704 , xlink:href="https://doi.org/10.1080/00958972.2018.1522536"
- Description: A 2,6-dibrominated 3,5-distyryl boron-dipyrromethene (BODIPY) dye with a moderately high singlet oxygen quantum yield was encapsulated in Pluronic® F-127 micelles, and its dark cytotoxicity and photodynamic activity were investigated on the human breast adenocarcinoma MCF-7 cell line. The BODIPY dye exhibited very low dark toxicity and a significant PDT effect when added in drug formulations consisting of 5.0% (v/v) DMSO in supplemented Dulbecco’s modified Eagle’s medium (DMEM) and as Pluronic® F-127 micelle encapsulation complexes in supplemented DMEM alone. An IC50 value of 4 ± 2 μM was obtained when the BODIPY dye was encapsulated in Pluronic® F-127 micelles during in vitro photodynamic activity studies in MCF-7 cancer cells with a 660 nm light emitting diode.
- Full Text:
- Date Issued: 2018
- Authors: Molupe, Nthabeleng , Babu, Balaji , Oluwole, David O , Prinsloo, Earl , Mack, John , Nyokong, Tebello
- Date: 2018
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/187862 , vital:44704 , xlink:href="https://doi.org/10.1080/00958972.2018.1522536"
- Description: A 2,6-dibrominated 3,5-distyryl boron-dipyrromethene (BODIPY) dye with a moderately high singlet oxygen quantum yield was encapsulated in Pluronic® F-127 micelles, and its dark cytotoxicity and photodynamic activity were investigated on the human breast adenocarcinoma MCF-7 cell line. The BODIPY dye exhibited very low dark toxicity and a significant PDT effect when added in drug formulations consisting of 5.0% (v/v) DMSO in supplemented Dulbecco’s modified Eagle’s medium (DMEM) and as Pluronic® F-127 micelle encapsulation complexes in supplemented DMEM alone. An IC50 value of 4 ± 2 μM was obtained when the BODIPY dye was encapsulated in Pluronic® F-127 micelles during in vitro photodynamic activity studies in MCF-7 cancer cells with a 660 nm light emitting diode.
- Full Text:
- Date Issued: 2018
- «
- ‹
- 1
- ›
- »