Sn (IV) porphyrin-biotin decorated nitrogen doped graphene quantum dots nanohybrids for photodynamic therapy
- Magaela, N Bridged, Matshitse, Refilwe, Balaji, Babu, Managa, Muthumuni, Prinsloo, Earl, Nyokong, Tebello
- Authors: Magaela, N Bridged , Matshitse, Refilwe , Balaji, Babu , Managa, Muthumuni , Prinsloo, Earl , Nyokong, Tebello
- Date: 2022
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/230018 , vital:49733 , xlink:href="https://doi.org/10.1016/j.poly.2021.115624"
- Description: Photodynamic therapy (PDT) is a minimally invasive therapeutic procedure for cancer treatment. This study focuses on the synthesis, photophysicochemical properties, and PDT activity of Sn (IV) porphyrin (2), when linked to biotin decorated nitrogen doped graphene quantum dots (B-NGQDs). The porphyrin complex 2 was conjugated through an ester bond to B-NGQDs to form 2-B-NGQDs. Singlet oxygen quantum yield increased for 2 when linked to B-NGQDs to form 2-B-NQGDs. The dark toxicity and photodynamic therapy studies were conducted for 2, NGQDs and their conjugates using MCF-7 breast cancer cells. The cell viability for dark toxicity of all the compounds was above 90%, and 2-B-NGQDs showed high PDT activity at a concentration of 40 µg/mL with cell viability of 22%.
- Full Text:
- Date Issued: 2022
- Authors: Magaela, N Bridged , Matshitse, Refilwe , Balaji, Babu , Managa, Muthumuni , Prinsloo, Earl , Nyokong, Tebello
- Date: 2022
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/230018 , vital:49733 , xlink:href="https://doi.org/10.1016/j.poly.2021.115624"
- Description: Photodynamic therapy (PDT) is a minimally invasive therapeutic procedure for cancer treatment. This study focuses on the synthesis, photophysicochemical properties, and PDT activity of Sn (IV) porphyrin (2), when linked to biotin decorated nitrogen doped graphene quantum dots (B-NGQDs). The porphyrin complex 2 was conjugated through an ester bond to B-NGQDs to form 2-B-NGQDs. Singlet oxygen quantum yield increased for 2 when linked to B-NGQDs to form 2-B-NQGDs. The dark toxicity and photodynamic therapy studies were conducted for 2, NGQDs and their conjugates using MCF-7 breast cancer cells. The cell viability for dark toxicity of all the compounds was above 90%, and 2-B-NGQDs showed high PDT activity at a concentration of 40 µg/mL with cell viability of 22%.
- Full Text:
- Date Issued: 2022
The in vitro photo-sonodynamic combinatorial therapy activity of cationic and zwitterionic phthalocyanines on MCF-7 and HeLa cancer cell lines
- Nene, Lindokuhle Cindy, Buthelezi, Khanyisile, Prinsloo, Earl, Nyokong, Tebello
- Authors: Nene, Lindokuhle Cindy , Buthelezi, Khanyisile , Prinsloo, Earl , Nyokong, Tebello
- Date: 2022
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/295891 , vital:57387 , xlink:href="https://doi.org/10.1016/j.jphotochem.2022.114116"
- Description: The syntheses and characterization studies of zwitterionic 2,9,16,23-tetrakis-(N-propane sultone-morpholino) zinc(II) (4) and 2,9,16,23-tetrakis-(2,5-dimethyl-4-(N-propane sultone-morpholinomethyl))-phenoxy zinc(II) (6) phthalocyanines are reported in this work. The photophysical properties, reactive oxygen species (ROS) generation and in vitro anticancer photodynamic (PDT), sonodynamic (SDT), and photo-sonodynamic combination (PSDT) therapy activities of the Pcs were studied and compared to their cationic counterparts: (2,9,16,23-tetrakis-(N-methyl-morpholino) Zn(II)Pc, 3), (2,9,16,23-tetrakis-(2,5-dimethyl-4-(N-methylmorpholine)-phenoxy) Zn(II)Pc, 5). The cationic Pcs maintained higher anticancer activity for all treatment types and had higher ROS generation compared to the zwitterionic Pcs. Singlet oxygen and hydroxyl radicals were generated during ultrasound and combination irradiations of the Pcs. The zwitterionic Pcs also generated carbon radicals under ultrasound and combination irradiations. The ability of the Pcs to generate ROS is essential for PDT, SDT and PSDT, thus making these Pcs potential anticancer probes for these treatment types. Furthermore, the Pcs demonstrated the ability to bind to bovine serum albumin protein.
- Full Text:
- Date Issued: 2022
- Authors: Nene, Lindokuhle Cindy , Buthelezi, Khanyisile , Prinsloo, Earl , Nyokong, Tebello
- Date: 2022
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/295891 , vital:57387 , xlink:href="https://doi.org/10.1016/j.jphotochem.2022.114116"
- Description: The syntheses and characterization studies of zwitterionic 2,9,16,23-tetrakis-(N-propane sultone-morpholino) zinc(II) (4) and 2,9,16,23-tetrakis-(2,5-dimethyl-4-(N-propane sultone-morpholinomethyl))-phenoxy zinc(II) (6) phthalocyanines are reported in this work. The photophysical properties, reactive oxygen species (ROS) generation and in vitro anticancer photodynamic (PDT), sonodynamic (SDT), and photo-sonodynamic combination (PSDT) therapy activities of the Pcs were studied and compared to their cationic counterparts: (2,9,16,23-tetrakis-(N-methyl-morpholino) Zn(II)Pc, 3), (2,9,16,23-tetrakis-(2,5-dimethyl-4-(N-methylmorpholine)-phenoxy) Zn(II)Pc, 5). The cationic Pcs maintained higher anticancer activity for all treatment types and had higher ROS generation compared to the zwitterionic Pcs. Singlet oxygen and hydroxyl radicals were generated during ultrasound and combination irradiations of the Pcs. The zwitterionic Pcs also generated carbon radicals under ultrasound and combination irradiations. The ability of the Pcs to generate ROS is essential for PDT, SDT and PSDT, thus making these Pcs potential anticancer probes for these treatment types. Furthermore, the Pcs demonstrated the ability to bind to bovine serum albumin protein.
- Full Text:
- Date Issued: 2022
- «
- ‹
- 1
- ›
- »