Interacting motif networks located in hotspots associated with RNA release are conserved in Enterovirus capsids
- Ross, Caroline J, Knox, Caroline M, Tastan Bishop, Özlem
- Authors: Ross, Caroline J , Knox, Caroline M , Tastan Bishop, Özlem
- Date: 2017
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/124855 , vital:35704 , https://doi.10.1002/1873-3468.12663
- Description: Enteroviruses are responsible for a multitude of human diseases. Expansion of the virus capsid is associated with a cascade of conformational changes that allow the subsequent release of RNA. For the first time, this study presents a comprehensive bioinformatic screen for the prediction of interacting motifs within intraprotomer interfaces and across respective interfaces surrounding the fivefold and twofold axes. The results identify a network of conserved motif residues involved in interactions in enteroviruses that may be critical to capsid stabilisation, providing guidelines towards developing antivirals that interfere with viral expansion during RNA release.
- Full Text:
- Date Issued: 2017
- Authors: Ross, Caroline J , Knox, Caroline M , Tastan Bishop, Özlem
- Date: 2017
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/124855 , vital:35704 , https://doi.10.1002/1873-3468.12663
- Description: Enteroviruses are responsible for a multitude of human diseases. Expansion of the virus capsid is associated with a cascade of conformational changes that allow the subsequent release of RNA. For the first time, this study presents a comprehensive bioinformatic screen for the prediction of interacting motifs within intraprotomer interfaces and across respective interfaces surrounding the fivefold and twofold axes. The results identify a network of conserved motif residues involved in interactions in enteroviruses that may be critical to capsid stabilisation, providing guidelines towards developing antivirals that interfere with viral expansion during RNA release.
- Full Text:
- Date Issued: 2017
MD-TASK: a software suite for analyzing molecular dynamics trajectories
- Brown, David K, Penkler, David L, Amamuddy, Olivier S, Ross, Caroline J, Atilgan, Ali R, Atilgan, Canan, Tastan Bishop, Özlem
- Authors: Brown, David K , Penkler, David L , Amamuddy, Olivier S , Ross, Caroline J , Atilgan, Ali R , Atilgan, Canan , Tastan Bishop, Özlem
- Date: 2017
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/125138 , vital:35735 , https://doi.10.1093/bioinformatics/btx349
- Description: Molecular dynamics (MD) determines the physical motions of atoms of a biological macromolecule in a cell-like environment and is an important method in structural bioinformatics. Traditionally, measurements such as root mean square deviation, root mean square fluctuation, radius of gyration, and various energy measures have been used to analyze MD simulations. Here, we present MD-TASK, a novel software suite that employs graph theory techniques, perturbation response scanning, and dynamic cross-correlation to provide unique ways for analyzing MD trajectories.
- Full Text:
- Date Issued: 2017
- Authors: Brown, David K , Penkler, David L , Amamuddy, Olivier S , Ross, Caroline J , Atilgan, Ali R , Atilgan, Canan , Tastan Bishop, Özlem
- Date: 2017
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/125138 , vital:35735 , https://doi.10.1093/bioinformatics/btx349
- Description: Molecular dynamics (MD) determines the physical motions of atoms of a biological macromolecule in a cell-like environment and is an important method in structural bioinformatics. Traditionally, measurements such as root mean square deviation, root mean square fluctuation, radius of gyration, and various energy measures have been used to analyze MD simulations. Here, we present MD-TASK, a novel software suite that employs graph theory techniques, perturbation response scanning, and dynamic cross-correlation to provide unique ways for analyzing MD trajectories.
- Full Text:
- Date Issued: 2017
- «
- ‹
- 1
- ›
- »