Ocean warming affects the distribution and abundance of resident fishes by changing their reproductive scope
- Potts, Warren M, Booth, Anthony J, Richardson, Timothy J, Sauer, Warwick H H
- Authors: Potts, Warren M , Booth, Anthony J , Richardson, Timothy J , Sauer, Warwick H H
- Date: 2014
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/125352 , vital:35775 , https://doi.10.1007/s11160-013-9329-3
- Description: With ocean warming predicted globally, one of the mechanisms driving distributional shifts and changes in the abundance of resident fishes is reproductive output. The relationship between sea surface temperature and the reproductive activity of a eurythermic, resident coastal species, blacktail seabream Diplodus sargus capensis, was examined in the ‘‘ocean warming’’ hotspot of the northern Benguela. Reproductive activity was found to be restricted to periods when the water temperature dropped below 20 _C. A metadata analysis conducted on the D. sargus sub-species complex similarly showed that reproductive activity was restricted to temperatures between 15 and 20 _C, regardless of the range in ambient water temperature. Based on these findings and using satellite derived SST information, we examined D. s. capensis’s total and seasonal ‘‘reproductive scope’’ that is defined as either the area suitable for spawning each year or the duration of its potential spawning season at a fixed geographical locality, respectively. Trends were examined over the last three decades. Reproductive scope by area was found to be shrinking at a rate of 7 % per decade in southern Angola and expanding at a rate of 6 % per decade in northern Namibia. Reproductive scope by season decreased by 1.05 months per decade in Namibe, southern Angola and increased by 0.76 months per decade in Hentiesbaai, northern Namibia. Changes in reproductive scope may be a driving mechanism of distributional shifts in resident fishes, although the rate of the shifts is likely to be slow. More importantly, changes in reproductive scope will not be uniform throughout fish distributions and will most likely result in heterogeneous variations in fish abundance.
- Full Text:
- Authors: Potts, Warren M , Booth, Anthony J , Richardson, Timothy J , Sauer, Warwick H H
- Date: 2014
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/125352 , vital:35775 , https://doi.10.1007/s11160-013-9329-3
- Description: With ocean warming predicted globally, one of the mechanisms driving distributional shifts and changes in the abundance of resident fishes is reproductive output. The relationship between sea surface temperature and the reproductive activity of a eurythermic, resident coastal species, blacktail seabream Diplodus sargus capensis, was examined in the ‘‘ocean warming’’ hotspot of the northern Benguela. Reproductive activity was found to be restricted to periods when the water temperature dropped below 20 _C. A metadata analysis conducted on the D. sargus sub-species complex similarly showed that reproductive activity was restricted to temperatures between 15 and 20 _C, regardless of the range in ambient water temperature. Based on these findings and using satellite derived SST information, we examined D. s. capensis’s total and seasonal ‘‘reproductive scope’’ that is defined as either the area suitable for spawning each year or the duration of its potential spawning season at a fixed geographical locality, respectively. Trends were examined over the last three decades. Reproductive scope by area was found to be shrinking at a rate of 7 % per decade in southern Angola and expanding at a rate of 6 % per decade in northern Namibia. Reproductive scope by season decreased by 1.05 months per decade in Namibe, southern Angola and increased by 0.76 months per decade in Hentiesbaai, northern Namibia. Changes in reproductive scope may be a driving mechanism of distributional shifts in resident fishes, although the rate of the shifts is likely to be slow. More importantly, changes in reproductive scope will not be uniform throughout fish distributions and will most likely result in heterogeneous variations in fish abundance.
- Full Text:
Ocean warming hotspots provide early warning laboratories for climate change impacts
- Pecl, Gretta T, Hobday, Alistair J, Frusher, Stewart, Sauer, Warwick H H, Bates, Amanda E
- Authors: Pecl, Gretta T , Hobday, Alistair J , Frusher, Stewart , Sauer, Warwick H H , Bates, Amanda E
- Date: 2014
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/125363 , vital:35776 , https://doi.10.1007/s11160-014-9355-9
- Description: A growing literature describes a wide range of negative impacts of climate change on marine resources and the people and communities they support, including species range changes, changes in productivity of fisheries and declines in economic performance (Doney et al. 2012; Poloczanska et al. 2013). These impacts, many of which are projected to increase in future, are compounded by growing pressures on marine resources (Halpern et al. 2008; Maxwell et al. 2013). An estimated 260 million people are involved directly or indirectly in global marine fisheries (Teh and Sumaila 2013) with many of the resources for capture fisheries already fully (&57 % in 2009) or over exploited (30 %) (FAO 2012). Nevertheless, production of marine resources will need to increase to accommodate the demands of a growing population, and the impacts of climate change on food security will need to be minimised (FAO 2009). Identifying opportunities and threats, and developing adaptation options in response to climate change impacts in the marine realm, is essential for optimising the benefits that society can continue to derive from the goods and services provided by marine resources.
- Full Text:
- Authors: Pecl, Gretta T , Hobday, Alistair J , Frusher, Stewart , Sauer, Warwick H H , Bates, Amanda E
- Date: 2014
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/125363 , vital:35776 , https://doi.10.1007/s11160-014-9355-9
- Description: A growing literature describes a wide range of negative impacts of climate change on marine resources and the people and communities they support, including species range changes, changes in productivity of fisheries and declines in economic performance (Doney et al. 2012; Poloczanska et al. 2013). These impacts, many of which are projected to increase in future, are compounded by growing pressures on marine resources (Halpern et al. 2008; Maxwell et al. 2013). An estimated 260 million people are involved directly or indirectly in global marine fisheries (Teh and Sumaila 2013) with many of the resources for capture fisheries already fully (&57 % in 2009) or over exploited (30 %) (FAO 2012). Nevertheless, production of marine resources will need to increase to accommodate the demands of a growing population, and the impacts of climate change on food security will need to be minimised (FAO 2009). Identifying opportunities and threats, and developing adaptation options in response to climate change impacts in the marine realm, is essential for optimising the benefits that society can continue to derive from the goods and services provided by marine resources.
- Full Text:
Ocean warming, a rapid distributional shift, and the hybridization of a coastal fish species
- Potts, Warren M, Henriques, Romina, Santos, Carmen V D, Munnik, Kate, Ansorge, Isabelle J, Dufois, Francois, Sauer, Warwick H H, Booth, Anthony J, Kirchner, Carola, Sauer, Warwick, Shaw, Paul W
- Authors: Potts, Warren M , Henriques, Romina , Santos, Carmen V D , Munnik, Kate , Ansorge, Isabelle J , Dufois, Francois , Sauer, Warwick H H , Booth, Anthony J , Kirchner, Carola , Sauer, Warwick , Shaw, Paul W
- Date: 2014
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/125375 , vital:35777 , https://doi.10.1111/gcb.12612
- Description: Despite increasing awareness of large-scale climate-driven distribution shifts in the marine environment, no study has linked rapid ocean warming to a shift in distribution and consequent hybridization of a marine fish species. This study describes rapid warming (0.8 °C per decade) in the coastal waters of the Angola-Benguela Frontal Zone over the last three decades and a concomitant shift by a temperature sensitive coastal fish species (Argyrosomus coronus) southward from Angola into Namibia. In this context, rapid shifts in distribution across Economic Exclusive Zones will complicate the management of fishes, particularly when there is a lack of congruence in the fisheries policy between nations. Evidence for recent hybridization between A. coronus and a congener, A. inodorus, indicate that the rapid shift in distribution of A. coronus has placed adults of the two species in contact during their spawning events. Ocean warming may therefore revert established species isolation mechanisms and alter the evolutionary history of fishes. While the consequences of the hybridization on the production of the resource remain unclear, this will most likely introduce additional layers of complexity to their management.
- Full Text:
- Authors: Potts, Warren M , Henriques, Romina , Santos, Carmen V D , Munnik, Kate , Ansorge, Isabelle J , Dufois, Francois , Sauer, Warwick H H , Booth, Anthony J , Kirchner, Carola , Sauer, Warwick , Shaw, Paul W
- Date: 2014
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/125375 , vital:35777 , https://doi.10.1111/gcb.12612
- Description: Despite increasing awareness of large-scale climate-driven distribution shifts in the marine environment, no study has linked rapid ocean warming to a shift in distribution and consequent hybridization of a marine fish species. This study describes rapid warming (0.8 °C per decade) in the coastal waters of the Angola-Benguela Frontal Zone over the last three decades and a concomitant shift by a temperature sensitive coastal fish species (Argyrosomus coronus) southward from Angola into Namibia. In this context, rapid shifts in distribution across Economic Exclusive Zones will complicate the management of fishes, particularly when there is a lack of congruence in the fisheries policy between nations. Evidence for recent hybridization between A. coronus and a congener, A. inodorus, indicate that the rapid shift in distribution of A. coronus has placed adults of the two species in contact during their spawning events. Ocean warming may therefore revert established species isolation mechanisms and alter the evolutionary history of fishes. While the consequences of the hybridization on the production of the resource remain unclear, this will most likely introduce additional layers of complexity to their management.
- Full Text:
- «
- ‹
- 1
- ›
- »