Mulch tower treatment system for greywater reuse Part II: destructive testing and effluent treatment
- Tandlich, Roman, Zuma, Bongumusa M, Whittington-Jones, Kevin J, Burgess, Jo E
- Authors: Tandlich, Roman , Zuma, Bongumusa M , Whittington-Jones, Kevin J , Burgess, Jo E
- Date: 2009
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/71547 , vital:29863 , https://doi.org/10.1016/j.desal.2008.03.031
- Description: The mulch tower (MT) system described in Part I was tested to failure to determine its range of operating conditions. An increase in the influent temperature led to a statistically significant release of components of the chemical oxygen demand (COD) and the five day biochemical oxygen demand (BOD5), as well as phosphates from the MT system. Heterotrophic plate count (HPC) of the mulch layer dropped from 1.2 (± 0.6) × 106/g dry weight to 1.5 (± 0.3) × 105/g dry weight of the mulch layer with increases of the influent temperature. This indicates that the increase in influent temperature killed off some of the active biomass in the MT biofilm. After a five day drying period under active aeration, the MT system retained the ability to remove COD, total suspended solids (TSS), and nitrates. Greywater treatment by the MT system became impossible after a 48 day drying period under active aeration. Chlorination of the simulated MT effluent with a mixture of sodium dichloroisocyanurate and trichloroisocyanuric acid decreased the faecal coliform concentrations (FC) and the total coliform concentrations (TC) below 800 CFUs/100 ml within 65 h. Beyond 65 h, the pH of the effluent became highly acidic. To maintain optimum performance influent should be fed into the MT system at least once every 5 days, sufficient aeration should be guaranteed, and the MT effluent should be chlorinated for 65 h to eliminate all pathogens before any reuse.
- Full Text: false
- Date Issued: 2009
Mulch tower treatment system for greywater reuse Part II: destructive testing and effluent treatment
- Authors: Tandlich, Roman , Zuma, Bongumusa M , Whittington-Jones, Kevin J , Burgess, Jo E
- Date: 2009
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/71547 , vital:29863 , https://doi.org/10.1016/j.desal.2008.03.031
- Description: The mulch tower (MT) system described in Part I was tested to failure to determine its range of operating conditions. An increase in the influent temperature led to a statistically significant release of components of the chemical oxygen demand (COD) and the five day biochemical oxygen demand (BOD5), as well as phosphates from the MT system. Heterotrophic plate count (HPC) of the mulch layer dropped from 1.2 (± 0.6) × 106/g dry weight to 1.5 (± 0.3) × 105/g dry weight of the mulch layer with increases of the influent temperature. This indicates that the increase in influent temperature killed off some of the active biomass in the MT biofilm. After a five day drying period under active aeration, the MT system retained the ability to remove COD, total suspended solids (TSS), and nitrates. Greywater treatment by the MT system became impossible after a 48 day drying period under active aeration. Chlorination of the simulated MT effluent with a mixture of sodium dichloroisocyanurate and trichloroisocyanuric acid decreased the faecal coliform concentrations (FC) and the total coliform concentrations (TC) below 800 CFUs/100 ml within 65 h. Beyond 65 h, the pH of the effluent became highly acidic. To maintain optimum performance influent should be fed into the MT system at least once every 5 days, sufficient aeration should be guaranteed, and the MT effluent should be chlorinated for 65 h to eliminate all pathogens before any reuse.
- Full Text: false
- Date Issued: 2009
Mulch tower treatment system Part I: Overall performance in greywater treatment
- Zuma, Bongumusa M, Tandlich, Roman, Whittington-Jones, Kevin J, Burgess, Jo E
- Authors: Zuma, Bongumusa M , Tandlich, Roman , Whittington-Jones, Kevin J , Burgess, Jo E
- Date: 2009
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/71537 , vital:29862 , https://doi.org/10.1016/j.desal.2008.03.030
- Description: A mulch tower (MT) system for greywater treatment is introduced in this paper. Materials used to assemble the MT system included mulch, coarse sand, fine and coarse gravel. Limited removal efficiency of the MT system was demonstrated for alkalinity, total hardness, pH, Cl–, PO43–, NH4+, and SO42–, with the estimated cumulative removals ranging from 7 to 12%. Intermediate removal efficiency was observed for chemical oxygen demand (COD), NO3–, and S2– with the estimated cumulative removals ranging from 24 to 28%. The highest removal efficiency was observed for the total suspended solids (TSS) with the estimated cumulative removal equal to 52%. Given the minute residence time in the MT system, the results obtained were promising and justify scale-up studies for potential on-site applications. The MT effluent did not meet hygienic norms with respect to the faecal coliform concentration (FC) and the total coliform concentration (TC), and further effluent treatment is required before any discharge or reuse of the treated greywater. Further research should focus on characterisation of the microbial community of the MT, and the fate of Cl–, PO43–, NH4+, and SO42–.
- Full Text: false
- Date Issued: 2009
- Authors: Zuma, Bongumusa M , Tandlich, Roman , Whittington-Jones, Kevin J , Burgess, Jo E
- Date: 2009
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/71537 , vital:29862 , https://doi.org/10.1016/j.desal.2008.03.030
- Description: A mulch tower (MT) system for greywater treatment is introduced in this paper. Materials used to assemble the MT system included mulch, coarse sand, fine and coarse gravel. Limited removal efficiency of the MT system was demonstrated for alkalinity, total hardness, pH, Cl–, PO43–, NH4+, and SO42–, with the estimated cumulative removals ranging from 7 to 12%. Intermediate removal efficiency was observed for chemical oxygen demand (COD), NO3–, and S2– with the estimated cumulative removals ranging from 24 to 28%. The highest removal efficiency was observed for the total suspended solids (TSS) with the estimated cumulative removal equal to 52%. Given the minute residence time in the MT system, the results obtained were promising and justify scale-up studies for potential on-site applications. The MT effluent did not meet hygienic norms with respect to the faecal coliform concentration (FC) and the total coliform concentration (TC), and further effluent treatment is required before any discharge or reuse of the treated greywater. Further research should focus on characterisation of the microbial community of the MT, and the fate of Cl–, PO43–, NH4+, and SO42–.
- Full Text: false
- Date Issued: 2009
- «
- ‹
- 1
- ›
- »