Polyamide nanofiber membranes functionalized with zinc phthalocyanines
- Goethals, Annelies, Mugadza, Tawanda, Arslanoglu, Yasin, Zugle, Ruphino, Antunes, Edith M, Van Hulle, Stijn W, Nyokong, Tebello, De Clerck, Karen
- Authors: Goethals, Annelies , Mugadza, Tawanda , Arslanoglu, Yasin , Zugle, Ruphino , Antunes, Edith M , Van Hulle, Stijn W , Nyokong, Tebello , De Clerck, Karen
- Date: 2014
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/241505 , vital:50945 , xlink:href="https://doi.org/10.1002/app.40486"
- Description: Electrospinning is an efficient method for the production of polyamide nanofiber membranes that are suitable for water filtration. Previous studies have shown that nanofiber membranes have high clean water permeability. The pathogen removal efficiency can be improved by functionalization with (organic) biocides. However, these membranes, like other membranes, are vulnerable to fouling which reduces the filtration efficiency. Therefore the present article investigates the potential of zinc phthalocyanines, which can produce singlet oxygen in the presence of visible light, as a functionalizing agent. The polyamide nanofiber membranes were functionalized with phthalocyanines using both a pre-functionalizing and post-functionalizing method. Only the post-functionalization method shows to result in nanofiber membranes capable of producing singlet oxygen. After 30 min 45% of 1,2-diphenylisobenzofuran (DPBF), used as an oxygen quencher, was removed by reaction with singlet oxygen. This resulted in a removal rate of 0.33 mol DBPF mol−1Zn min−1. During short term leaching tests, phthalocyanines could not be detected.
- Full Text:
- Date Issued: 2014
- Authors: Goethals, Annelies , Mugadza, Tawanda , Arslanoglu, Yasin , Zugle, Ruphino , Antunes, Edith M , Van Hulle, Stijn W , Nyokong, Tebello , De Clerck, Karen
- Date: 2014
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/241505 , vital:50945 , xlink:href="https://doi.org/10.1002/app.40486"
- Description: Electrospinning is an efficient method for the production of polyamide nanofiber membranes that are suitable for water filtration. Previous studies have shown that nanofiber membranes have high clean water permeability. The pathogen removal efficiency can be improved by functionalization with (organic) biocides. However, these membranes, like other membranes, are vulnerable to fouling which reduces the filtration efficiency. Therefore the present article investigates the potential of zinc phthalocyanines, which can produce singlet oxygen in the presence of visible light, as a functionalizing agent. The polyamide nanofiber membranes were functionalized with phthalocyanines using both a pre-functionalizing and post-functionalizing method. Only the post-functionalization method shows to result in nanofiber membranes capable of producing singlet oxygen. After 30 min 45% of 1,2-diphenylisobenzofuran (DPBF), used as an oxygen quencher, was removed by reaction with singlet oxygen. This resulted in a removal rate of 0.33 mol DBPF mol−1Zn min−1. During short term leaching tests, phthalocyanines could not be detected.
- Full Text:
- Date Issued: 2014
Photooxidation of 4-chlorophenol sensitized by lutetium tetraphenoxy phthalocyanine anchored on electrospun polystyrene polymer fiber
- Zugle, Ruphino, Antunes, Edith M, Khene, Samson M, Nyokong, Tebello
- Authors: Zugle, Ruphino , Antunes, Edith M , Khene, Samson M , Nyokong, Tebello
- Date: 2012
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/245787 , vital:51405 , xlink:href="https://doi.org/10.1016/j.poly.2011.11.005"
- Description: An electrospun polystyrene (PS) fiber incorporating tetraphenoxy phthalocyanine complex of lutetium (LuTPPc/PS) as a photosensitizer was applied for the degradation of 4-chlorophenol in aqueous solution in the presence of visible light. The photocatalytic activity of the LuTPPc in the fiber was compared to that of zinc phthalocyanine (ZnPc) incorporated into the PS fiber, and the former showed higher activity. UV–Vis spectral changes of sample solutions indicated transformation of the analyte with first order kinetics and half-lives that are within one and half hours for LuTPPc/PS. Products identified from the spectral changes and gas chromatography were benzoquinone, hydroquinone and 4,4′-dihydroxydiphenol suggesting that the photodegradation of 4-chlorophenol was through both Types I and II mechanisms.
- Full Text:
- Date Issued: 2012
- Authors: Zugle, Ruphino , Antunes, Edith M , Khene, Samson M , Nyokong, Tebello
- Date: 2012
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/245787 , vital:51405 , xlink:href="https://doi.org/10.1016/j.poly.2011.11.005"
- Description: An electrospun polystyrene (PS) fiber incorporating tetraphenoxy phthalocyanine complex of lutetium (LuTPPc/PS) as a photosensitizer was applied for the degradation of 4-chlorophenol in aqueous solution in the presence of visible light. The photocatalytic activity of the LuTPPc in the fiber was compared to that of zinc phthalocyanine (ZnPc) incorporated into the PS fiber, and the former showed higher activity. UV–Vis spectral changes of sample solutions indicated transformation of the analyte with first order kinetics and half-lives that are within one and half hours for LuTPPc/PS. Products identified from the spectral changes and gas chromatography were benzoquinone, hydroquinone and 4,4′-dihydroxydiphenol suggesting that the photodegradation of 4-chlorophenol was through both Types I and II mechanisms.
- Full Text:
- Date Issued: 2012
Polyamide nanofiber membranes functionalized with zinc phthalocyanines
- Goethals, Annelies, Mugadza, Tawanda, Arslanoglu, Yasin, Zugle, Ruphino, Antunes, Edith M, Hulle, Stijn W H Van, Nyokong, Tebello, Clerck, Karen De
- Authors: Goethals, Annelies , Mugadza, Tawanda , Arslanoglu, Yasin , Zugle, Ruphino , Antunes, Edith M , Hulle, Stijn W H Van , Nyokong, Tebello , Clerck, Karen De
- Language: English
- Type: Article
- Identifier: vital:7313 , http://hdl.handle.net/10962/d1020539
- Description: Electrospinning is an efficient method for the production of polyamide nanofiber membranes that are suitable for water filtration. Previous studies have shown that nanofiber membranes have high clean water permeability. The pathogen removal efficiency can be improved by functionalization with (organic) biocides. However, these membranes, like other membranes, are vulnerable to fouling which reduces the filtration efficiency. Therefore the present article investigates the potential of zinc phthalocyanines, which can produce singlet oxygen in the presence of visible light, as a functionalizing agent. The polyamide nanofiber membranes were functionalized with phthalocyanines using both a pre-functionalizing and post-functionalizing method. Only the post-functionalization method shows to result in nanofiber membranes capable of producing singlet oxygen. After 30 min 45% of 1,2-diphenylisobenzofuran (DPBF), used as an oxygen quencher, was removed by reaction with singlet oxygen. This resulted in a removal rate of 0.33 mol DBPF mol−1Zn min−1. During short term leaching tests, phthalocyanines could not be detected. , Original publication is available at http://dx.doi.org/10.1002/app.40486
- Full Text: false
- Authors: Goethals, Annelies , Mugadza, Tawanda , Arslanoglu, Yasin , Zugle, Ruphino , Antunes, Edith M , Hulle, Stijn W H Van , Nyokong, Tebello , Clerck, Karen De
- Language: English
- Type: Article
- Identifier: vital:7313 , http://hdl.handle.net/10962/d1020539
- Description: Electrospinning is an efficient method for the production of polyamide nanofiber membranes that are suitable for water filtration. Previous studies have shown that nanofiber membranes have high clean water permeability. The pathogen removal efficiency can be improved by functionalization with (organic) biocides. However, these membranes, like other membranes, are vulnerable to fouling which reduces the filtration efficiency. Therefore the present article investigates the potential of zinc phthalocyanines, which can produce singlet oxygen in the presence of visible light, as a functionalizing agent. The polyamide nanofiber membranes were functionalized with phthalocyanines using both a pre-functionalizing and post-functionalizing method. Only the post-functionalization method shows to result in nanofiber membranes capable of producing singlet oxygen. After 30 min 45% of 1,2-diphenylisobenzofuran (DPBF), used as an oxygen quencher, was removed by reaction with singlet oxygen. This resulted in a removal rate of 0.33 mol DBPF mol−1Zn min−1. During short term leaching tests, phthalocyanines could not be detected. , Original publication is available at http://dx.doi.org/10.1002/app.40486
- Full Text: false
- «
- ‹
- 1
- ›
- »