A New Synthetic Method for Tetraazatricyclic Derivatives and Evaluation of Their Biological Properties
- Odame, Felix, Betz, Richard, Hosten, Eric C, Krause, Jason, Isaacs, Michelle, Hoppe, Heinrich C, Khanye, Setshaba D, Sayed, Yasien, Frost, P Carminita, Lobb, Kevin A, Tshentu, Zenixole
- Authors: Odame, Felix , Betz, Richard , Hosten, Eric C , Krause, Jason , Isaacs, Michelle , Hoppe, Heinrich C , Khanye, Setshaba D , Sayed, Yasien , Frost, P Carminita , Lobb, Kevin A , Tshentu, Zenixole
- Date: 2018
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/123189 , vital:35413 , https://doi.org/10.1002/slct.201802930
- Description: Herein, we propose novel quinolones incorporating an INH moiety as potential drug templates against TB. The quinolone-based compounds bearing an INH moiety attached via a hydrazide–hydrazone bond were synthesised and evaluated against Mycobacterium tuberculosis H37Rv (MTB). The compounds were also evaluated for cytotoxicity against HeLa cell lines. These compounds showed significant activity (MIC90) against MTB in the range of 0.2–8 μM without any cytotoxic effects. Compounds 10 (MIC90; 0.9 μM), 11 (MIC90; 0.2 μM), 12 (MIC90; 0.8 μM) and compound 15 (MIC90; 0.8 μM), the most active compounds in this series, demonstrate activities on par with INH and superior to those reported for the fluoroquinolones. The SAR analysis suggests that the nature of substituents at positions −1 and −3 of the quinolone nucleus influences anti-MTB activity. Aqueous solubility evaluation and in vitro metabolic stability of compound 12 highlights favourable drug-like properties for this compound class.
- Full Text:
- Date Issued: 2018
- Authors: Odame, Felix , Betz, Richard , Hosten, Eric C , Krause, Jason , Isaacs, Michelle , Hoppe, Heinrich C , Khanye, Setshaba D , Sayed, Yasien , Frost, P Carminita , Lobb, Kevin A , Tshentu, Zenixole
- Date: 2018
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/123189 , vital:35413 , https://doi.org/10.1002/slct.201802930
- Description: Herein, we propose novel quinolones incorporating an INH moiety as potential drug templates against TB. The quinolone-based compounds bearing an INH moiety attached via a hydrazide–hydrazone bond were synthesised and evaluated against Mycobacterium tuberculosis H37Rv (MTB). The compounds were also evaluated for cytotoxicity against HeLa cell lines. These compounds showed significant activity (MIC90) against MTB in the range of 0.2–8 μM without any cytotoxic effects. Compounds 10 (MIC90; 0.9 μM), 11 (MIC90; 0.2 μM), 12 (MIC90; 0.8 μM) and compound 15 (MIC90; 0.8 μM), the most active compounds in this series, demonstrate activities on par with INH and superior to those reported for the fluoroquinolones. The SAR analysis suggests that the nature of substituents at positions −1 and −3 of the quinolone nucleus influences anti-MTB activity. Aqueous solubility evaluation and in vitro metabolic stability of compound 12 highlights favourable drug-like properties for this compound class.
- Full Text:
- Date Issued: 2018
Analysis of non-peptidic compounds as potential malarial inhibitors against plasmodial cysteine proteases via integrated virtual screening workflow
- Musyoka, Thommas M, Kanzi, Aquillah M, Lobb, Kevin A, Tastan Bishop, Özlem
- Authors: Musyoka, Thommas M , Kanzi, Aquillah M , Lobb, Kevin A , Tastan Bishop, Özlem
- Date: 2016
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/123074 , vital:35403 , https://doi.10.1080/07391102.2015.1108231
- Description: Malaria is an infectious disease caused by a diverse group of erythrocytic protozoan parasites of the genus Plasmodium. It remains an exigent public health problem in the tropical areas of Africa, South America and parts of Asia and continues to take its toll in morbidity and mortality with half of the world’s population under a permanent risk of infection leading to more than half a million deaths annually (WHO, 2013). Five Plasmodium species, namely P. falciparum (Pf ), P. vivax (Pv), P. ovale (Po), P. malariae (Pm) and P. knowlesi (Pk), are known to infect humans with Pf responsible for more than 90% of the malarial fatalities reported in sub-Saharan Africa. The predominance of Pf is attributed to its adaptability (Ashley, McGready, Proux, & Nosten, 2006; Prugnolle et al., 2011). Although the high occurrence of the Duffy negative trait among African populations lowers the threat posed by Pv, it is the most frequent and widely causative agent of benign tertian malaria in other parts of the world (Mendis, Sina, Marchesini, & Carter, 2001). In addition to the listed human malarial parasite forms, several other Plasmodium species, which infect non-human laboratory models, have been identified and are of significant importance in understanding the parasite biology, the host–parasite interactions and in the drug development process (Langhorne et al., 2011).
- Full Text:
- Date Issued: 2016
- Authors: Musyoka, Thommas M , Kanzi, Aquillah M , Lobb, Kevin A , Tastan Bishop, Özlem
- Date: 2016
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/123074 , vital:35403 , https://doi.10.1080/07391102.2015.1108231
- Description: Malaria is an infectious disease caused by a diverse group of erythrocytic protozoan parasites of the genus Plasmodium. It remains an exigent public health problem in the tropical areas of Africa, South America and parts of Asia and continues to take its toll in morbidity and mortality with half of the world’s population under a permanent risk of infection leading to more than half a million deaths annually (WHO, 2013). Five Plasmodium species, namely P. falciparum (Pf ), P. vivax (Pv), P. ovale (Po), P. malariae (Pm) and P. knowlesi (Pk), are known to infect humans with Pf responsible for more than 90% of the malarial fatalities reported in sub-Saharan Africa. The predominance of Pf is attributed to its adaptability (Ashley, McGready, Proux, & Nosten, 2006; Prugnolle et al., 2011). Although the high occurrence of the Duffy negative trait among African populations lowers the threat posed by Pv, it is the most frequent and widely causative agent of benign tertian malaria in other parts of the world (Mendis, Sina, Marchesini, & Carter, 2001). In addition to the listed human malarial parasite forms, several other Plasmodium species, which infect non-human laboratory models, have been identified and are of significant importance in understanding the parasite biology, the host–parasite interactions and in the drug development process (Langhorne et al., 2011).
- Full Text:
- Date Issued: 2016
Characterization of nickel tetrahydroxy phthalocyanine complexes and the electrocatalytic oxidation of 4-chlorophenol
- Khene, Samson M, Lobb, Kevin A, Nyokong, Tebello
- Authors: Khene, Samson M , Lobb, Kevin A , Nyokong, Tebello
- Date: 2009
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/263308 , vital:53616 , xlink:href="https://doi.org/10.1016/j.ica.2009.08.019"
- Description: This work reports on the use of nickel(II) tetrahydroxy (NiPc(OH)4) and (poly-Ni(OH)Pc(OH)4) phthalocyanine complexes as films on ordinary poly graphite electrode (OPGE) for the electrochemical oxidation of 4-chlorophenol (4-CP). The NiPc(OH)4 film was electrotransformed to Ni(OH)Pc(OH)4 film in aqueous 0.1 M NaOH solution to the ‘O–Ni–O oxo’ bridge form. The result showed that the Ni(OH)Pc(OH)4 film on OPGE was more electroactive in terms of increase in current and less catalytic in terms of potential compared to the adsorbed NiPc(OH)4 on OPGE. The reactivity of the two molecules was explained by theoretical calculations. The energies of the frontier orbitals of NiPc(OH)4, Ni(OH)Pc(OH)4 and 4-chlorophenol were calculated using density functional theory (DFT) method. The inter molecular hardness (η) and donor–acceptor hardness (ηDA) of Ni(OH)Pc(OH)4, NiPc(OH)4, Ni(OH)Pc(OH)4/4-chlorophenol and NiPc(OH)4/4-chlorophenol were estimated. The Ni(OH)Pc(OH)4, showed stronger interaction with 4-chlorophenol than NiPc(OH)4. DFT method was also used to model IR and Raman spectrum of H2Pc(OH)4 and NiPc(OH)4.
- Full Text:
- Date Issued: 2009
- Authors: Khene, Samson M , Lobb, Kevin A , Nyokong, Tebello
- Date: 2009
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/263308 , vital:53616 , xlink:href="https://doi.org/10.1016/j.ica.2009.08.019"
- Description: This work reports on the use of nickel(II) tetrahydroxy (NiPc(OH)4) and (poly-Ni(OH)Pc(OH)4) phthalocyanine complexes as films on ordinary poly graphite electrode (OPGE) for the electrochemical oxidation of 4-chlorophenol (4-CP). The NiPc(OH)4 film was electrotransformed to Ni(OH)Pc(OH)4 film in aqueous 0.1 M NaOH solution to the ‘O–Ni–O oxo’ bridge form. The result showed that the Ni(OH)Pc(OH)4 film on OPGE was more electroactive in terms of increase in current and less catalytic in terms of potential compared to the adsorbed NiPc(OH)4 on OPGE. The reactivity of the two molecules was explained by theoretical calculations. The energies of the frontier orbitals of NiPc(OH)4, Ni(OH)Pc(OH)4 and 4-chlorophenol were calculated using density functional theory (DFT) method. The inter molecular hardness (η) and donor–acceptor hardness (ηDA) of Ni(OH)Pc(OH)4, NiPc(OH)4, Ni(OH)Pc(OH)4/4-chlorophenol and NiPc(OH)4/4-chlorophenol were estimated. The Ni(OH)Pc(OH)4, showed stronger interaction with 4-chlorophenol than NiPc(OH)4. DFT method was also used to model IR and Raman spectrum of H2Pc(OH)4 and NiPc(OH)4.
- Full Text:
- Date Issued: 2009
Establishing computational approaches towards identifying malarial allosteric modulators: a case study of plasmodium falciparum hsp70s
- Amusengeri, Arnold, Astl, Lindy, Lobb, Kevin A, Verkhivker, Gennady M, Tastan Bishop, Özlem
- Authors: Amusengeri, Arnold , Astl, Lindy , Lobb, Kevin A , Verkhivker, Gennady M , Tastan Bishop, Özlem
- Date: 2019
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/163000 , vital:41003 , https://doi.org/10.3390/ijms20225574
- Description: Combating malaria is almost a never-ending battle, as Plasmodium parasites develop resistance to the drugs used against them, as observed recently in artemisinin-based combination therapies. The main concern now is if the resistant parasite strains spread from Southeast Asia to Africa, the continent hosting most malaria cases. To prevent catastrophic results, we need to find non-conventional approaches. Allosteric drug targeting sites and modulators might be a new hope for malarial treatments. Heat shock proteins (HSPs) are potential malarial drug targets and have complex allosteric control mechanisms. Yet, studies on designing allosteric modulators against them are limited. Here, we identified allosteric modulators (SANC190 and SANC651) against P. falciparum Hsp70-1 and Hsp70-x, affecting the conformational dynamics of the proteins, delicately balanced by the endogenous ligands. Previously, we established a pipeline to identify allosteric sites and modulators. This study also further investigated alternative approaches to speed up the process by comparing all atom molecular dynamics simulations and dynamic residue network analysis with the coarse-grained (CG) versions of the calculations. Betweenness centrality (BC) profiles for PfHsp70-1 and PfHsp70-x derived from CG simulations not only revealed similar trends but also pointed to the same functional regions and specific residues corresponding to BC profile peaks.
- Full Text:
- Date Issued: 2019
- Authors: Amusengeri, Arnold , Astl, Lindy , Lobb, Kevin A , Verkhivker, Gennady M , Tastan Bishop, Özlem
- Date: 2019
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/163000 , vital:41003 , https://doi.org/10.3390/ijms20225574
- Description: Combating malaria is almost a never-ending battle, as Plasmodium parasites develop resistance to the drugs used against them, as observed recently in artemisinin-based combination therapies. The main concern now is if the resistant parasite strains spread from Southeast Asia to Africa, the continent hosting most malaria cases. To prevent catastrophic results, we need to find non-conventional approaches. Allosteric drug targeting sites and modulators might be a new hope for malarial treatments. Heat shock proteins (HSPs) are potential malarial drug targets and have complex allosteric control mechanisms. Yet, studies on designing allosteric modulators against them are limited. Here, we identified allosteric modulators (SANC190 and SANC651) against P. falciparum Hsp70-1 and Hsp70-x, affecting the conformational dynamics of the proteins, delicately balanced by the endogenous ligands. Previously, we established a pipeline to identify allosteric sites and modulators. This study also further investigated alternative approaches to speed up the process by comparing all atom molecular dynamics simulations and dynamic residue network analysis with the coarse-grained (CG) versions of the calculations. Betweenness centrality (BC) profiles for PfHsp70-1 and PfHsp70-x derived from CG simulations not only revealed similar trends but also pointed to the same functional regions and specific residues corresponding to BC profile peaks.
- Full Text:
- Date Issued: 2019
In silico study of Plasmodium 1-deoxy-d-xylulose 5-phosphate reductoisomerase (DXR) for identification of novel inhibitors from SANCDB:
- Diallo, Bakary N, Lobb, Kevin A, Tastan Bishop, Özlem
- Authors: Diallo, Bakary N , Lobb, Kevin A , Tastan Bishop, Özlem
- Date: 2019
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/162687 , vital:40973 , https://doi.org/10.21955/aasopenres.1114960.1
- Description: In this study, we intended to find potential 1-deoxy-D-xylulose 5-phosphate reductoisomerase (DXR) inhibitors as antimalarial drugs from the South African National Compound Database (SANCDB; https://sancdb.rubi.ru.ac.za) using computational tools.
- Full Text:
- Date Issued: 2019
- Authors: Diallo, Bakary N , Lobb, Kevin A , Tastan Bishop, Özlem
- Date: 2019
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/162687 , vital:40973 , https://doi.org/10.21955/aasopenres.1114960.1
- Description: In this study, we intended to find potential 1-deoxy-D-xylulose 5-phosphate reductoisomerase (DXR) inhibitors as antimalarial drugs from the South African National Compound Database (SANCDB; https://sancdb.rubi.ru.ac.za) using computational tools.
- Full Text:
- Date Issued: 2019
Novel potential antimalarials through drug repurposing and multitargeting: a Computational Approach
- Diallo, Bakary N, Lobb, Kevin A, Tastan Bishop, Özlem
- Authors: Diallo, Bakary N , Lobb, Kevin A , Tastan Bishop, Özlem
- Date: 2019
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/162676 , vital:40972 , https://doi.org/10.21955/aasopenres.1114955.1
- Description: This study aims to identify potential antimalarials from Food and Drug Administration (FDA) approved drugs.
- Full Text:
- Date Issued: 2019
- Authors: Diallo, Bakary N , Lobb, Kevin A , Tastan Bishop, Özlem
- Date: 2019
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/162676 , vital:40972 , https://doi.org/10.21955/aasopenres.1114955.1
- Description: This study aims to identify potential antimalarials from Food and Drug Administration (FDA) approved drugs.
- Full Text:
- Date Issued: 2019
Potential repurposing of four FDA approved compounds with antiplasmodial activity identified through proteome scale computational drug discovery and in vitro assay
- Diallo, Bakary N, Swart, Tarryn, Hoppe, Heinrich C, Tastan Bishop, Özlem, Lobb, Kevin A
- Authors: Diallo, Bakary N , Swart, Tarryn , Hoppe, Heinrich C , Tastan Bishop, Özlem , Lobb, Kevin A
- Date: 2021
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/177531 , vital:42830 , https://doi.org/10.1038/s41598-020-80722-2
- Description: Malaria elimination can benefit from time and cost-efficient approaches for antimalarials such as drug repurposing. In this work, 796 DrugBank compounds were screened against 36 Plasmodium falciparum targets using QuickVina-W. Hits were selected after rescoring using GRaph Interaction Matching (GRIM) and ligand efficiency metrics: surface efficiency index (SEI), binding efficiency index (BEI) and lipophilic efficiency (LipE). They were further evaluated in Molecular dynamics (MD). Twenty-five protein–ligand complexes were finally retained from the 28,656 (36×796) dockings.
- Full Text:
- Date Issued: 2021
- Authors: Diallo, Bakary N , Swart, Tarryn , Hoppe, Heinrich C , Tastan Bishop, Özlem , Lobb, Kevin A
- Date: 2021
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/177531 , vital:42830 , https://doi.org/10.1038/s41598-020-80722-2
- Description: Malaria elimination can benefit from time and cost-efficient approaches for antimalarials such as drug repurposing. In this work, 796 DrugBank compounds were screened against 36 Plasmodium falciparum targets using QuickVina-W. Hits were selected after rescoring using GRaph Interaction Matching (GRIM) and ligand efficiency metrics: surface efficiency index (SEI), binding efficiency index (BEI) and lipophilic efficiency (LipE). They were further evaluated in Molecular dynamics (MD). Twenty-five protein–ligand complexes were finally retained from the 28,656 (36×796) dockings.
- Full Text:
- Date Issued: 2021
SANCDB: a South African natural compound database
- Hatherley, Rowan, Brown, David K, Musyoka, Thommas M, Penkler, David L, Faya, Ngonidzashe, Lobb, Kevin A, Tastan Bishop, Özlem
- Authors: Hatherley, Rowan , Brown, David K , Musyoka, Thommas M , Penkler, David L , Faya, Ngonidzashe , Lobb, Kevin A , Tastan Bishop, Özlem
- Date: 2015
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/162890 , vital:40994 , DOI 10.1186/s13321-015-0080-89
- Description: Natural products (NPs) are important to the drug discovery process. NP research efforts are expanding world-wide and South Africa is no exception to this. While freely-accessible small molecule databases, containing compounds isolated from indigenous sources, have been established in a number of other countries, there is currently no such online database in South Africa.
- Full Text:
- Date Issued: 2015
- Authors: Hatherley, Rowan , Brown, David K , Musyoka, Thommas M , Penkler, David L , Faya, Ngonidzashe , Lobb, Kevin A , Tastan Bishop, Özlem
- Date: 2015
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/162890 , vital:40994 , DOI 10.1186/s13321-015-0080-89
- Description: Natural products (NPs) are important to the drug discovery process. NP research efforts are expanding world-wide and South Africa is no exception to this. While freely-accessible small molecule databases, containing compounds isolated from indigenous sources, have been established in a number of other countries, there is currently no such online database in South Africa.
- Full Text:
- Date Issued: 2015
SANCDB: a South African natural compound database
- Hatherley, Rowan, Brown, David K, Musyoka, Thommas M, Penkler, David L, Faya, Ngonidzashe, Lobb, Kevin A, Tastan Bishop, Özlem
- Authors: Hatherley, Rowan , Brown, David K , Musyoka, Thommas M , Penkler, David L , Faya, Ngonidzashe , Lobb, Kevin A , Tastan Bishop, Özlem
- Date: 2015
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/148337 , vital:38730 , DOI: 10.1186/s13321-015-0080-8
- Description: Natural products (NPs) are important to the drug discovery process. NP research efforts are expanding world-wide and South Africa is no exception to this. While freely-accessible small molecule databases, containing compounds isolated from indigenous sources, have been established in a number of other countries, there is currently no such online database in South Africa.
- Full Text:
- Date Issued: 2015
- Authors: Hatherley, Rowan , Brown, David K , Musyoka, Thommas M , Penkler, David L , Faya, Ngonidzashe , Lobb, Kevin A , Tastan Bishop, Özlem
- Date: 2015
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/148337 , vital:38730 , DOI: 10.1186/s13321-015-0080-8
- Description: Natural products (NPs) are important to the drug discovery process. NP research efforts are expanding world-wide and South Africa is no exception to this. While freely-accessible small molecule databases, containing compounds isolated from indigenous sources, have been established in a number of other countries, there is currently no such online database in South Africa.
- Full Text:
- Date Issued: 2015
Structure based docking and molecular dynamic studies of plasmodial cysteine proteases against a South African natural compound and its analogs:
- Musyoka, Thommas M, Kanzi, Aquillah M, Lobb, Kevin A, Tastan Bishop, Özlem
- Authors: Musyoka, Thommas M , Kanzi, Aquillah M , Lobb, Kevin A , Tastan Bishop, Özlem
- Date: 2016
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/148027 , vital:38703 , DOI: 10.1038/srep23690
- Description: Identification of potential drug targets as well as development of novel antimalarial chemotherapies with unique mode of actions due to drug resistance by Plasmodium parasites are inevitable. Falcipains (falcipain-2 and falcipain-3) of Plasmodium falciparum, which catalyse the haemoglobin degradation process, are validated drug targets. Previous attempts to develop peptide based drugs against these enzymes have been futile due to the poor pharmacological profiles and susceptibility to degradation by host enzymes. This study aimed to identify potential non-peptide inhibitors against falcipains and their homologs from other Plasmodium species.
- Full Text:
- Date Issued: 2016
- Authors: Musyoka, Thommas M , Kanzi, Aquillah M , Lobb, Kevin A , Tastan Bishop, Özlem
- Date: 2016
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/148027 , vital:38703 , DOI: 10.1038/srep23690
- Description: Identification of potential drug targets as well as development of novel antimalarial chemotherapies with unique mode of actions due to drug resistance by Plasmodium parasites are inevitable. Falcipains (falcipain-2 and falcipain-3) of Plasmodium falciparum, which catalyse the haemoglobin degradation process, are validated drug targets. Previous attempts to develop peptide based drugs against these enzymes have been futile due to the poor pharmacological profiles and susceptibility to degradation by host enzymes. This study aimed to identify potential non-peptide inhibitors against falcipains and their homologs from other Plasmodium species.
- Full Text:
- Date Issued: 2016
Synthesis and anti-parasitic activity of C-benzylated (N-arylcarbamoyl) alkylphosphonate esters
- Adeyemi, Christiana Modupe, Isaacs, Michelle, Mnkandhla, Dumisani, Krause, Rui W M, Klein, Rosalyn, Hoppe, Heinrich C, Lobb, Kevin A, Kaye, Perry T
- Authors: Adeyemi, Christiana Modupe , Isaacs, Michelle , Mnkandhla, Dumisani , Krause, Rui W M , Klein, Rosalyn , Hoppe, Heinrich C , Lobb, Kevin A , Kaye, Perry T
- Date: 2017
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/125641 , vital:35803 , https://doi.org/10.1016/j.tet.2017.01.045
- Description: Unexpected substituent-dependent regioselectivty challenges in the synthesis of C-benzylated (N-arylcarbamoyl)phosphonate esters have been resolved. The C-benzylated N-furfurylcarbamoyl derivative showed low micromolar PfLDH inhibition, while one of the C-benzylated N-arylcarbamoyl analogues was active against Nagana Trypanosoma brucei parasites which are responsible for African trypanosomiasis in cattle.
- Full Text:
- Date Issued: 2017
- Authors: Adeyemi, Christiana Modupe , Isaacs, Michelle , Mnkandhla, Dumisani , Krause, Rui W M , Klein, Rosalyn , Hoppe, Heinrich C , Lobb, Kevin A , Kaye, Perry T
- Date: 2017
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/125641 , vital:35803 , https://doi.org/10.1016/j.tet.2017.01.045
- Description: Unexpected substituent-dependent regioselectivty challenges in the synthesis of C-benzylated (N-arylcarbamoyl)phosphonate esters have been resolved. The C-benzylated N-furfurylcarbamoyl derivative showed low micromolar PfLDH inhibition, while one of the C-benzylated N-arylcarbamoyl analogues was active against Nagana Trypanosoma brucei parasites which are responsible for African trypanosomiasis in cattle.
- Full Text:
- Date Issued: 2017
Synthesis, characterization and biological activity of some Dithiourea Derivatives:
- Odame, Felix, Hosten, Eric, Krause, Jason, Isaacs, Michelle, Hoppe, Heinrich C, Khanye, Setshaba D, Sayed, Yasien, Frost, Carminita, Lobb, Kevin A, Tshentu, Zenixole
- Authors: Odame, Felix , Hosten, Eric , Krause, Jason , Isaacs, Michelle , Hoppe, Heinrich C , Khanye, Setshaba D , Sayed, Yasien , Frost, Carminita , Lobb, Kevin A , Tshentu, Zenixole
- Date: 2020
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/163046 , vital:41007 , DOI: 10.17344/acsi.2019.5689
- Description: Novel dithiourea derivatives have been designed as HIV-1 protease inhibitors using Autodock 4.2, synthesized and characterized by spectroscopic methods and microanalysis.
- Full Text:
- Date Issued: 2020
- Authors: Odame, Felix , Hosten, Eric , Krause, Jason , Isaacs, Michelle , Hoppe, Heinrich C , Khanye, Setshaba D , Sayed, Yasien , Frost, Carminita , Lobb, Kevin A , Tshentu, Zenixole
- Date: 2020
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/163046 , vital:41007 , DOI: 10.17344/acsi.2019.5689
- Description: Novel dithiourea derivatives have been designed as HIV-1 protease inhibitors using Autodock 4.2, synthesized and characterized by spectroscopic methods and microanalysis.
- Full Text:
- Date Issued: 2020
The determination of CHARMM force field parameters for the Mg2+ containing HIV-1 integrase:
- Musyoka, Thommas, Tastan Bishop, Özlem, Lobb, Kevin A, Moses, Vuyani
- Authors: Musyoka, Thommas , Tastan Bishop, Özlem , Lobb, Kevin A , Moses, Vuyani
- Date: 2018
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/148139 , vital:38713 , DOI: 10.1016/j.cplett.2018.09.019
- Description: The HIV integrase enzyme is a validated drug target. However, its potential has remained largely unexploited until recently due to lack of structural and mechanistic information. Its catalytic core domain (CCD) is crucial for the viral-human DNA integration making integrase an ideal target for inhibitor design. However, in order to do so, force field parameters for the integrase magnesium ion need to be established. Quantum mechanical calculations were used to derive force field parameters which were validated through molecular dynamics studies. Our results show that the parameters determined accurately maintain the integrity of the metal pocket of the integrase CCD.
- Full Text:
- Date Issued: 2018
- Authors: Musyoka, Thommas , Tastan Bishop, Özlem , Lobb, Kevin A , Moses, Vuyani
- Date: 2018
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/148139 , vital:38713 , DOI: 10.1016/j.cplett.2018.09.019
- Description: The HIV integrase enzyme is a validated drug target. However, its potential has remained largely unexploited until recently due to lack of structural and mechanistic information. Its catalytic core domain (CCD) is crucial for the viral-human DNA integration making integrase an ideal target for inhibitor design. However, in order to do so, force field parameters for the integrase magnesium ion need to be established. Quantum mechanical calculations were used to derive force field parameters which were validated through molecular dynamics studies. Our results show that the parameters determined accurately maintain the integrity of the metal pocket of the integrase CCD.
- Full Text:
- Date Issued: 2018
The evaluation and validation of copper (II) force field parameters of the Auxiliary Activity family 9 enzymes:
- Moses, Vuyani, Tastan Bishop, Özlem, Lobb, Kevin A
- Authors: Moses, Vuyani , Tastan Bishop, Özlem , Lobb, Kevin A
- Date: 2017
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/148206 , vital:38719 , DOI: 10.1016/j.cplett.2017.04.022
- Description: The Auxiliary Activity family 9 (AA9) proteins are Cu2+ coordinating enzymes which are crucial for the early stages of cellulose degradation. In this study, the force field parameters for copper-containing bonds in the Type 1 AA9 protein active site were established and used in a molecular dynamics simulation on a solvated, neutralized system containing an AA9 protein, Cu2+ and a β-cellulose surface. The copper to cellulose interaction was evident during the dynamics, which could also be accelerated by the use of high Cu O van der Waals parameters. The interaction of AA9, Cu2+ and cellulose is described in detail.
- Full Text:
- Date Issued: 2017
- Authors: Moses, Vuyani , Tastan Bishop, Özlem , Lobb, Kevin A
- Date: 2017
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/148206 , vital:38719 , DOI: 10.1016/j.cplett.2017.04.022
- Description: The Auxiliary Activity family 9 (AA9) proteins are Cu2+ coordinating enzymes which are crucial for the early stages of cellulose degradation. In this study, the force field parameters for copper-containing bonds in the Type 1 AA9 protein active site were established and used in a molecular dynamics simulation on a solvated, neutralized system containing an AA9 protein, Cu2+ and a β-cellulose surface. The copper to cellulose interaction was evident during the dynamics, which could also be accelerated by the use of high Cu O van der Waals parameters. The interaction of AA9, Cu2+ and cellulose is described in detail.
- Full Text:
- Date Issued: 2017
Theoretical and photodynamic therapy characteristics of heteroatom doped detonation nanodiamonds linked to asymmetrical phthalocyanine for eradication of breast cancer cells
- Matshitse, Refilwe, Tshiwawa, Tendamudzimu, Managa, Muthumuni, Nwaji, Njemuwa, Lobb, Kevin A, Nyokong, Tebello
- Authors: Matshitse, Refilwe , Tshiwawa, Tendamudzimu , Managa, Muthumuni , Nwaji, Njemuwa , Lobb, Kevin A , Nyokong, Tebello
- Date: 2020
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/186089 , vital:44462 , xlink:href="https://doi.org/10.1016/j.jlumin.2020.117465"
- Description: An amide mono substituted benzothiozole phthalocyanine: zinc(II) 3-(4-((3,17,23-tris(4-(benzo [d]thiazol-2-yl)phenoxy)-9-yl)oxy) phenyl)amide phthalocyanine (NH2BzPc) was covalently linked to undoped and heteroatom doped detonation nanodiamonds (DNDs): B@DNDs, P@DNDs, S@DNDs, N@DNDs, and SandN@DNDs There is a drastic decrease in highest occupied molecular orbital (HOMO) – lowest unoccupied molecular orbital (LUMO) energy gaps for nanoconjugates compared to DNDs alone. B@DNDs-NH2BzPc, SandN@DNDs-NH2BzPc, and P@DNDs-NH2BzPc showed superior photodynamic therapy (PDT) effects. DNDs-NH2BzPc also had a small HOMO-LUMO gap, but did not show improved PDT activity compared to the Pc alone, suggesting doping of DNDs is important. This study shows improved PDT effect on Michigan Cancer Foundation-7 breast cancer lines at 7.63%, 7.62% and 6.5% cell viability for P@DNDs-NH2BzPc, SandN@DNDs-NH2BzPc and B@DNDs-NH2BzPc, respectively.
- Full Text:
- Date Issued: 2020
- Authors: Matshitse, Refilwe , Tshiwawa, Tendamudzimu , Managa, Muthumuni , Nwaji, Njemuwa , Lobb, Kevin A , Nyokong, Tebello
- Date: 2020
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/186089 , vital:44462 , xlink:href="https://doi.org/10.1016/j.jlumin.2020.117465"
- Description: An amide mono substituted benzothiozole phthalocyanine: zinc(II) 3-(4-((3,17,23-tris(4-(benzo [d]thiazol-2-yl)phenoxy)-9-yl)oxy) phenyl)amide phthalocyanine (NH2BzPc) was covalently linked to undoped and heteroatom doped detonation nanodiamonds (DNDs): B@DNDs, P@DNDs, S@DNDs, N@DNDs, and SandN@DNDs There is a drastic decrease in highest occupied molecular orbital (HOMO) – lowest unoccupied molecular orbital (LUMO) energy gaps for nanoconjugates compared to DNDs alone. B@DNDs-NH2BzPc, SandN@DNDs-NH2BzPc, and P@DNDs-NH2BzPc showed superior photodynamic therapy (PDT) effects. DNDs-NH2BzPc also had a small HOMO-LUMO gap, but did not show improved PDT activity compared to the Pc alone, suggesting doping of DNDs is important. This study shows improved PDT effect on Michigan Cancer Foundation-7 breast cancer lines at 7.63%, 7.62% and 6.5% cell viability for P@DNDs-NH2BzPc, SandN@DNDs-NH2BzPc and B@DNDs-NH2BzPc, respectively.
- Full Text:
- Date Issued: 2020
- «
- ‹
- 1
- ›
- »