Quantifying feed intake and feeding intensity using two experimental conditions and the effect of different feeding strategies on the production parameters of farmed South African abalone, haliotis midae
- Authors: Wortley, Ross Michael
- Date: 2023-03-29
- Subjects: Mariculture South Africa , Abalone culture , Abalones Growth , Abalones Feeding and feeds , Feed conversion ratio , Haliotis midae
- Language: English
- Type: Academic theses , Master's theses , text
- Identifier: http://hdl.handle.net/${Handle} , vital:71932
- Description: As abalone are slow-growing animals there is a high investment of capital, running costs and labour in commercial abalone farming. Revenue needs to be maximised by achieving fast growth rates. A foremost driver of abalone growth is feed intake and feeding intensity of the abalone as well as the feeding regimen a farm utilises. While feed intake is well-documented in H. midae, there is a paucity of information regarding this aspect in abalone above 70 g and the relationship between feeding intensity, feed conversion rate (FCR) and daily growth rate needs to be documented. Similarly, there are a limited number of studies dealing with the effects of different pellet types of the same formulation, that differ only in shape and size, on feed intake and production in H. midae. This study made use of both a controlled laboratory experiment and commercial-scale farm experiment with the aim of testing whether feed intake information produced under laboratory conditions can provide good estimates of feed intake under farming conditions, which can further be implemented into feeding strategies on abalone farms. This study quantified daily feed intake (F) in 10 – 20 g, 100 – 110 g and 150 – 160 g abalone weight classes using two different pellet types and determined the relationship between the duration of feed availability and feed intake under laboratory conditions. The effect of three different pellet type strategies (fed daily: a leaf-only strategy = L d-1, a short-pellet only strategy = SP d-1, and a strategy that used both = B d-1) on abalone production parameters under farming conditions such as growth rate, feed conversion ratio (FCR), feeding intensity (FI) and weight variation of 30 – 40 g H. midae was also investigated. A commercial-scale farm study was designed to test the effect of four commercially relevant feeding regimens (three size-specific regimens and one commercially practiced feeding method) on the growth, FCR, feeding intensity and weight variation of these three abalone weight classes while taking into account an economic model to assess the profitability of each feeding regimen. Daily feed intake as a percentage of body mass (% BM d-1) was a function of abalone weight class between the 10 – 20 g and two larger weight classes 100 – 110 g and 150 – 160 g p < 0.0001), however feed intake was not different between the 100 – 110 g and 150 – 160 g weight classes. Pellet type did not affect feed intake in all abalone weight classes (p = 0.15). Feed intake (F) was positively linearly correlated with duration of feed availability (h) in the 10 – 20 g weight class (r2 = 0.76, p <0.00001) and logarithmically correlated in the 100 – 110 g (r2 = 0.25, p < 0.02) and 150 – 160 g (r2 = 0.52, p < 0.0001) weight classes (10 – 20 g abalone-1: 3 F (% BM) = 0.02(h) + 0.1976, 100 – 110 g abalone-1: F (% BM) = log10(h)*0.17 + 0.17, 150 – 160 g abalone-1: F (% BM) = log10(h)*0.36 + 0.07). There was no significant difference in monthly average abalone weight, daily growth rate (G), FCR and feeding intensity between each pellet type strategy (G: p = 0.60, FCR: p = 0.62, FI: p = 0.54 ). However, abalone grew well over the 112-day growth period with average abalone weight increasing significantly between each monthly sample time (pooled pellet type strategy: Huynh-Feldt correction; p < 0.00001). Furthermore, abalone fed the leaf-only pellet type strategy (L d-1) fell into higher weight classes after a 112-day growth period (Z test: 50 – 70 g: 72%) which was 16.1 % higher compared to the SP d-1 and B d-1 strategies. Daily growth rate (r2 = 0.34, p < 0.01) and FCR (r2 = 0.42, p < 0.004) was negatively correlated and FCR was positively correlated with daily feeding intensity, respectively (G = - 2.59 (FI) + 1.526, FCR = 8.8082 (FI) – 2.7108). Feeding regimen affected the production parameters of three abalone weight classes. The method practiced on the farm resulted in the best growth in the 10 – 20 g abalone weight class. The farm feeding method resulted in slower yet more efficient growth rates (lowest FCR values) in the abalone weight classes, 100 – 110 g and 150 – 160 g abalone- 1. However, size-specific feeding regimens resulted in the fastest growth rates but resulted in higher FCR values (less efficient). The relationship between feeding intensity, daily growth rate and FCR all showed that an increase in feeding intensity results in increased daily growth rates and FCR values. The economic model suggests that the higher FCR values associated with size-specific regimens, which have higher associated costs to producing abalone, were greatly outweighed by the growth attained by the abalone in the 100 – 110 g and 150 – 160 g weight classes. The size-specific regimens generated a higher potential monetary value of abalone after a 112-day period, which would consequently result in higher income for abalone farms. For abalone ranging from 100 – 110 and 150 – 160 grams, the economic model suggested that in a quarterly grading schedule (112 days) that abalone be fed the size specific daily rations, which is a function of body mass, at 0.35 % BM d-1 and 0.352 % BM d-1, respectively. The two experimental conditions used in this study produced feed intake and production parameter information that is beneficial to South African abalone farmers. The small-scale laboratory study produced information on feed intake that can be used as reference values as to what abalone in these weight classes can consume on a daily basis. The laboratory study can provide estimates of feed intake under farming conditions but should only be used as minimum 4 values when determining size-specific feeding regimens. To maximise abalone growth, farmers should utilise size-specific feeding regimens for abalone above 30 g. Daily growth rate and FCR can be predicted as a function of the abalone’s feeding intensity. Further studies are needed to determine the effects of abalone weight class on production parameters when testing different pellet types as well as an exploration into behavioural studies focusing on diet preferences. Additionally, future studies need to take into consideration abalone above the weight of 100 g with additional focus of research on behavioural, genetic and environmental aspects on abalone feed intake. , Thesis (MSc) -- Faculty of Science, Ichthyology and Fisheries Science, 2023
- Full Text:
- Date Issued: 2023-03-29
- Authors: Wortley, Ross Michael
- Date: 2023-03-29
- Subjects: Mariculture South Africa , Abalone culture , Abalones Growth , Abalones Feeding and feeds , Feed conversion ratio , Haliotis midae
- Language: English
- Type: Academic theses , Master's theses , text
- Identifier: http://hdl.handle.net/${Handle} , vital:71932
- Description: As abalone are slow-growing animals there is a high investment of capital, running costs and labour in commercial abalone farming. Revenue needs to be maximised by achieving fast growth rates. A foremost driver of abalone growth is feed intake and feeding intensity of the abalone as well as the feeding regimen a farm utilises. While feed intake is well-documented in H. midae, there is a paucity of information regarding this aspect in abalone above 70 g and the relationship between feeding intensity, feed conversion rate (FCR) and daily growth rate needs to be documented. Similarly, there are a limited number of studies dealing with the effects of different pellet types of the same formulation, that differ only in shape and size, on feed intake and production in H. midae. This study made use of both a controlled laboratory experiment and commercial-scale farm experiment with the aim of testing whether feed intake information produced under laboratory conditions can provide good estimates of feed intake under farming conditions, which can further be implemented into feeding strategies on abalone farms. This study quantified daily feed intake (F) in 10 – 20 g, 100 – 110 g and 150 – 160 g abalone weight classes using two different pellet types and determined the relationship between the duration of feed availability and feed intake under laboratory conditions. The effect of three different pellet type strategies (fed daily: a leaf-only strategy = L d-1, a short-pellet only strategy = SP d-1, and a strategy that used both = B d-1) on abalone production parameters under farming conditions such as growth rate, feed conversion ratio (FCR), feeding intensity (FI) and weight variation of 30 – 40 g H. midae was also investigated. A commercial-scale farm study was designed to test the effect of four commercially relevant feeding regimens (three size-specific regimens and one commercially practiced feeding method) on the growth, FCR, feeding intensity and weight variation of these three abalone weight classes while taking into account an economic model to assess the profitability of each feeding regimen. Daily feed intake as a percentage of body mass (% BM d-1) was a function of abalone weight class between the 10 – 20 g and two larger weight classes 100 – 110 g and 150 – 160 g p < 0.0001), however feed intake was not different between the 100 – 110 g and 150 – 160 g weight classes. Pellet type did not affect feed intake in all abalone weight classes (p = 0.15). Feed intake (F) was positively linearly correlated with duration of feed availability (h) in the 10 – 20 g weight class (r2 = 0.76, p <0.00001) and logarithmically correlated in the 100 – 110 g (r2 = 0.25, p < 0.02) and 150 – 160 g (r2 = 0.52, p < 0.0001) weight classes (10 – 20 g abalone-1: 3 F (% BM) = 0.02(h) + 0.1976, 100 – 110 g abalone-1: F (% BM) = log10(h)*0.17 + 0.17, 150 – 160 g abalone-1: F (% BM) = log10(h)*0.36 + 0.07). There was no significant difference in monthly average abalone weight, daily growth rate (G), FCR and feeding intensity between each pellet type strategy (G: p = 0.60, FCR: p = 0.62, FI: p = 0.54 ). However, abalone grew well over the 112-day growth period with average abalone weight increasing significantly between each monthly sample time (pooled pellet type strategy: Huynh-Feldt correction; p < 0.00001). Furthermore, abalone fed the leaf-only pellet type strategy (L d-1) fell into higher weight classes after a 112-day growth period (Z test: 50 – 70 g: 72%) which was 16.1 % higher compared to the SP d-1 and B d-1 strategies. Daily growth rate (r2 = 0.34, p < 0.01) and FCR (r2 = 0.42, p < 0.004) was negatively correlated and FCR was positively correlated with daily feeding intensity, respectively (G = - 2.59 (FI) + 1.526, FCR = 8.8082 (FI) – 2.7108). Feeding regimen affected the production parameters of three abalone weight classes. The method practiced on the farm resulted in the best growth in the 10 – 20 g abalone weight class. The farm feeding method resulted in slower yet more efficient growth rates (lowest FCR values) in the abalone weight classes, 100 – 110 g and 150 – 160 g abalone- 1. However, size-specific feeding regimens resulted in the fastest growth rates but resulted in higher FCR values (less efficient). The relationship between feeding intensity, daily growth rate and FCR all showed that an increase in feeding intensity results in increased daily growth rates and FCR values. The economic model suggests that the higher FCR values associated with size-specific regimens, which have higher associated costs to producing abalone, were greatly outweighed by the growth attained by the abalone in the 100 – 110 g and 150 – 160 g weight classes. The size-specific regimens generated a higher potential monetary value of abalone after a 112-day period, which would consequently result in higher income for abalone farms. For abalone ranging from 100 – 110 and 150 – 160 grams, the economic model suggested that in a quarterly grading schedule (112 days) that abalone be fed the size specific daily rations, which is a function of body mass, at 0.35 % BM d-1 and 0.352 % BM d-1, respectively. The two experimental conditions used in this study produced feed intake and production parameter information that is beneficial to South African abalone farmers. The small-scale laboratory study produced information on feed intake that can be used as reference values as to what abalone in these weight classes can consume on a daily basis. The laboratory study can provide estimates of feed intake under farming conditions but should only be used as minimum 4 values when determining size-specific feeding regimens. To maximise abalone growth, farmers should utilise size-specific feeding regimens for abalone above 30 g. Daily growth rate and FCR can be predicted as a function of the abalone’s feeding intensity. Further studies are needed to determine the effects of abalone weight class on production parameters when testing different pellet types as well as an exploration into behavioural studies focusing on diet preferences. Additionally, future studies need to take into consideration abalone above the weight of 100 g with additional focus of research on behavioural, genetic and environmental aspects on abalone feed intake. , Thesis (MSc) -- Faculty of Science, Ichthyology and Fisheries Science, 2023
- Full Text:
- Date Issued: 2023-03-29
A holistic approach in understanding the effects of dietary protein sources on the growth and reproductive development of farmed abalone, Haliotis midae
- Wu, Yu
- Authors: Wu, Yu
- Date: 2020
- Subjects: Abalones -- Nutrition , Abalones -- Reproduction , Abalones -- Growth , Abalone culture , Haliotis midae -- Nutrition , Haliotis midae -- Reproduction , Haliotis midae -- Growth , Haliotis midae fisheries
- Language: English
- Type: text , Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/167719 , vital:41506
- Description: The combination of fishmeal and soya in the formulated feed of farmed South African abalone, Haliotis midae, not only improved abalone growth, but also the sustainability of the compound diets by reducing the reliance on fishmeal. However, the presence of soya produced larger gonads compared to those of abalone fed kelp or single-source protein diets. There is an increasing drive to control sexual maturation and reduce undesirable spawning events in farmed abalone. However, the reasons for the reported effects of soya inclusion on the reproductive development of farmed H. midae remain unresolved. The aim of this research was to use a combination of techniques to contribute to the understanding of the relationship between growth, reproductive and nutritional physiology of farmed H. midae fed diets of varying protein sources. These techniques included stable isotope analysis (SIA), fatty acid analysis, gonad histological assessments and haemolymph sexsteroid hormone analysis. The objectives were to examine the allocation of protein and nutritional components to somatic and reproductive tissues. This study also included the first attempt to investigate the role that sex steroid hormones play during gametogenesis. Abalone (40 – 50 g abalone-1) were fed one of four diets: either a single-source protein-based diet, i.e., (1) fishmeal-only (FM) or (2) soya-only (S), or a combination diet of (3) fishmeal-soya (FM S) or (4) fishmeal-sunflower meal (FM SM). Sampling occurred in 45-day intervals over one year. Dietary protein source had an effect on the growth of abalone, with enhancements in growth linked to the combination of fishmeal and a plant-protein source. The fishmeal ingredient was the most utilised protein source throughout the temporal changes in protein allocation into somatic and reproductive tissue, followed by soya and then sunflower meal. The mean whole- body mass of abalone was significantly influenced by an interaction between time and dietary treatment, with average whole-body mass changing differently over time between treatments (RM-ANOVA, F(24, 96) = 2.13, p = 0.005). Overall, abalone that were fed FM S had higher mean whole-body mass values than abalone that were fed the single-protein based diets, while abalone that were fed FM SM were similar to animals from all dietary treatments (RMANOVA, F(3, 12) = 5.75, p = 0.01). Male abalone had significantly higher gonad bulk index (GBI) values compared to females (RM-ANOVA, F(1, 24) = 49.03, p < 0.001) and this was independent of dietary treatment. Within each sex, female abalone fed the FM S diet (15.92 ± 1.88 mm3 g-1) had significantly higher GBI values than abalone fed S (9.76 ± 1.08 mm3 g-1), while abalone fed FM (11.96 ± 1.71 mm3 g-1) and FM SM (11.90 ± 0.80 mm3 g-1) were similar to abalone from all other dietary treatments (Tukey’s HSD, p < 0.05). Male abalone fed the FM S (21.59 ± 2.10 mm3 g-1) and FM SM diet (19.30 ± 2.63 mm3 g-1) had similar GBI values and they were significantly higher than in abalone fed the S diet (14.74 ± 1.27 mm3 g-1), while abalone fed FM S had significantly higher GBI values than abalone that consumed the FM diet (15.08 ±1.63mm3 g-1) ( Tukey’s HSD, p < 0.05). Although sunflower meal was poorly utilised, it produced similar overall growth to abalone that were fed the FM S diets. Yet, feed conversion ratio values were significantly lower for abalone fed FM S (1.30 ± 0.13) compared to those in the other three treatments, with ratios ranging from 1.65 – 1.72 over the one-year. The fatty acid compositions of the somatic and gonadal tissues were similar between treatments (PERMANOVA, p = 0.21), while fatty acid composition was influenced by sampling day, tissue type and abalone sex (PERMANOVA, p < 0.05). The essential fatty acids (EFAs) eicosadienoic acid and a-linolenic acid were present in abalone tissue, but they were not detected in the diets, suggesting the important role that an alternate food source (e.g. farmed abalone also had access to diatoms) may have played and the ability that H. midae may have in converting long-chain polyunsaturated fatty acids from C18 precursors. A change in the abundance of EFAs in the gonad tissue during highest and lowest GBI values suggested that arachidonic, eicosapentaenoic, g-linolenic and linoleic acid were important in females, while eicosapentaenoic, eicosadienoic and a-linolenic acid were important for male reproductive development. Dietary protein sources had an effect on the frequency distribution of maturity stages, where females that were fed FM S produced more ripe gonads and more males that were fed FM SM contained testes that showed signs of ripeness over the one-year study. Although dietary protein influenced the sex steroid concentrations in females and males, exhibiting fluctuations throughout the one-year period, no distinct pattern linked to gametogenesis were observed. The results from this study illustrate: (1) the importance of conducting laboratory studies when implementing SIA and mixing models in aquaculture nutrition; (2) conducting nutritional studies on mature, grow-out abalone; and (3) assessing the importance of naturally occurring diatoms in their diet and their contribution to growth and reproduction. The novel contribution of this research towards abalone nutritional physiology, the implications of these findings to industry as well as potential considerations for future studies were addressed.
- Full Text:
- Date Issued: 2020
- Authors: Wu, Yu
- Date: 2020
- Subjects: Abalones -- Nutrition , Abalones -- Reproduction , Abalones -- Growth , Abalone culture , Haliotis midae -- Nutrition , Haliotis midae -- Reproduction , Haliotis midae -- Growth , Haliotis midae fisheries
- Language: English
- Type: text , Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/167719 , vital:41506
- Description: The combination of fishmeal and soya in the formulated feed of farmed South African abalone, Haliotis midae, not only improved abalone growth, but also the sustainability of the compound diets by reducing the reliance on fishmeal. However, the presence of soya produced larger gonads compared to those of abalone fed kelp or single-source protein diets. There is an increasing drive to control sexual maturation and reduce undesirable spawning events in farmed abalone. However, the reasons for the reported effects of soya inclusion on the reproductive development of farmed H. midae remain unresolved. The aim of this research was to use a combination of techniques to contribute to the understanding of the relationship between growth, reproductive and nutritional physiology of farmed H. midae fed diets of varying protein sources. These techniques included stable isotope analysis (SIA), fatty acid analysis, gonad histological assessments and haemolymph sexsteroid hormone analysis. The objectives were to examine the allocation of protein and nutritional components to somatic and reproductive tissues. This study also included the first attempt to investigate the role that sex steroid hormones play during gametogenesis. Abalone (40 – 50 g abalone-1) were fed one of four diets: either a single-source protein-based diet, i.e., (1) fishmeal-only (FM) or (2) soya-only (S), or a combination diet of (3) fishmeal-soya (FM S) or (4) fishmeal-sunflower meal (FM SM). Sampling occurred in 45-day intervals over one year. Dietary protein source had an effect on the growth of abalone, with enhancements in growth linked to the combination of fishmeal and a plant-protein source. The fishmeal ingredient was the most utilised protein source throughout the temporal changes in protein allocation into somatic and reproductive tissue, followed by soya and then sunflower meal. The mean whole- body mass of abalone was significantly influenced by an interaction between time and dietary treatment, with average whole-body mass changing differently over time between treatments (RM-ANOVA, F(24, 96) = 2.13, p = 0.005). Overall, abalone that were fed FM S had higher mean whole-body mass values than abalone that were fed the single-protein based diets, while abalone that were fed FM SM were similar to animals from all dietary treatments (RMANOVA, F(3, 12) = 5.75, p = 0.01). Male abalone had significantly higher gonad bulk index (GBI) values compared to females (RM-ANOVA, F(1, 24) = 49.03, p < 0.001) and this was independent of dietary treatment. Within each sex, female abalone fed the FM S diet (15.92 ± 1.88 mm3 g-1) had significantly higher GBI values than abalone fed S (9.76 ± 1.08 mm3 g-1), while abalone fed FM (11.96 ± 1.71 mm3 g-1) and FM SM (11.90 ± 0.80 mm3 g-1) were similar to abalone from all other dietary treatments (Tukey’s HSD, p < 0.05). Male abalone fed the FM S (21.59 ± 2.10 mm3 g-1) and FM SM diet (19.30 ± 2.63 mm3 g-1) had similar GBI values and they were significantly higher than in abalone fed the S diet (14.74 ± 1.27 mm3 g-1), while abalone fed FM S had significantly higher GBI values than abalone that consumed the FM diet (15.08 ±1.63mm3 g-1) ( Tukey’s HSD, p < 0.05). Although sunflower meal was poorly utilised, it produced similar overall growth to abalone that were fed the FM S diets. Yet, feed conversion ratio values were significantly lower for abalone fed FM S (1.30 ± 0.13) compared to those in the other three treatments, with ratios ranging from 1.65 – 1.72 over the one-year. The fatty acid compositions of the somatic and gonadal tissues were similar between treatments (PERMANOVA, p = 0.21), while fatty acid composition was influenced by sampling day, tissue type and abalone sex (PERMANOVA, p < 0.05). The essential fatty acids (EFAs) eicosadienoic acid and a-linolenic acid were present in abalone tissue, but they were not detected in the diets, suggesting the important role that an alternate food source (e.g. farmed abalone also had access to diatoms) may have played and the ability that H. midae may have in converting long-chain polyunsaturated fatty acids from C18 precursors. A change in the abundance of EFAs in the gonad tissue during highest and lowest GBI values suggested that arachidonic, eicosapentaenoic, g-linolenic and linoleic acid were important in females, while eicosapentaenoic, eicosadienoic and a-linolenic acid were important for male reproductive development. Dietary protein sources had an effect on the frequency distribution of maturity stages, where females that were fed FM S produced more ripe gonads and more males that were fed FM SM contained testes that showed signs of ripeness over the one-year study. Although dietary protein influenced the sex steroid concentrations in females and males, exhibiting fluctuations throughout the one-year period, no distinct pattern linked to gametogenesis were observed. The results from this study illustrate: (1) the importance of conducting laboratory studies when implementing SIA and mixing models in aquaculture nutrition; (2) conducting nutritional studies on mature, grow-out abalone; and (3) assessing the importance of naturally occurring diatoms in their diet and their contribution to growth and reproduction. The novel contribution of this research towards abalone nutritional physiology, the implications of these findings to industry as well as potential considerations for future studies were addressed.
- Full Text:
- Date Issued: 2020
Morphometrics and reproduction of Terebrasabella heterouncinata (Polychaeta:Sabellidae), infesting abalone (Haliotis midae) from different culture environments
- Authors: Gray, Michael
- Date: 2003
- Subjects: Polychaeta , Sabellidae , Abalones -- Physiology , Abalones -- Nutrition , Abalone culture
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5384 , http://hdl.handle.net/10962/d1018231
- Description: In the late 1980's abalone culturalists noticed reduced growth rate and shell deformities in some abalone stocks. These problems were the result of infestations by a shell boring polychaete, Terebrasabella heterouncinata. Under intensive abalone culture conditions the level of infestation can reach epidemic proportions and there are often severe consequences for the host abalone. Heavy sabellid infestation levels have placed the economic viability of several South African farms under threat. This study formed part of an ongoing project that is aimed at investigating the basic biology of Terebrasabella heterouncinata. The majority of abalone farmers in South Africa feed their abalone either naturally occurring kelp (Ecklonia maxima) or the formulated abalone feed, Abfeed. Farmers have suggested that the use of Abfeed is associated with higher sabellid infestation levels and changing the abalone diet from Abfeed to kelp helps reduce sabellid infestation. Speculation has arisen indicating that older, slower growing abalone are more susceptible to sabellid infestation. The effect of host abalone diet history and their growth on sabellid settlement success, morphometries and reproduction was quantified. To better understand the plasticity of the expression of life history traits the variability of morphometric and reproductive characteristics was compared between different farm environments. And more...
- Full Text:
- Date Issued: 2003
- Authors: Gray, Michael
- Date: 2003
- Subjects: Polychaeta , Sabellidae , Abalones -- Physiology , Abalones -- Nutrition , Abalone culture
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5384 , http://hdl.handle.net/10962/d1018231
- Description: In the late 1980's abalone culturalists noticed reduced growth rate and shell deformities in some abalone stocks. These problems were the result of infestations by a shell boring polychaete, Terebrasabella heterouncinata. Under intensive abalone culture conditions the level of infestation can reach epidemic proportions and there are often severe consequences for the host abalone. Heavy sabellid infestation levels have placed the economic viability of several South African farms under threat. This study formed part of an ongoing project that is aimed at investigating the basic biology of Terebrasabella heterouncinata. The majority of abalone farmers in South Africa feed their abalone either naturally occurring kelp (Ecklonia maxima) or the formulated abalone feed, Abfeed. Farmers have suggested that the use of Abfeed is associated with higher sabellid infestation levels and changing the abalone diet from Abfeed to kelp helps reduce sabellid infestation. Speculation has arisen indicating that older, slower growing abalone are more susceptible to sabellid infestation. The effect of host abalone diet history and their growth on sabellid settlement success, morphometries and reproduction was quantified. To better understand the plasticity of the expression of life history traits the variability of morphometric and reproductive characteristics was compared between different farm environments. And more...
- Full Text:
- Date Issued: 2003
- «
- ‹
- 1
- ›
- »