Interactions of arbuscular mycorrhizal fungi and spore-associated bacteria
- Authors: Ridsdale, Carmen Jane
- Date: 2013
- Subjects: Mycorrhizal fungi , Host plants , Bacteria
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4159 , http://hdl.handle.net/10962/d1018269
- Description: Arbuscular mycorrhizal (AM) fungi are naturally occurring in roots of terrestrial plants. AM fungi are capable of benefiting the host plant through various mechanisms such as enhanced nutrient supply, alleviation of environmental stress and inhibition of plant fungal pathogens. AM fungal spore-associated bacteria have been previously isolated and shown to have plant growthpromoting (PGP) abilities by several authors. Some bacterial isolates are able to promote AM fungal colonisation of host plants and are known to be mycorrhizal helper bacteria (MHB). This study focused on the isolation of AM fungal spore-associated bacteria, characterization of the isolates according to plant growth promoting abilities and evaluation of their potential to enhance plant growth and mycorrhizal colonisation. AM fungi were extracted from soils sampled from natural indigenous forest sources, raspberry (Rubus idaeus cv. Heritage) and strawberry (Fragaria ananassa) farms in South Africa and from a raspberry (Rubus idaeus cv. Autumn Bliss) plantation in Argentina. A total of 52 sporeassociated bacteria were isolated from the external and internal surfaces of AM fungal spore morphotypes from the two countries. The bacterial isolates were evaluated for their PGP abilities such as phosphate solubilisation, indole-3-acetic acid production, ammonia production and inhibition of the fungal pathogens Fusarium oxysporum and Phythophthora nicotianae through mechanisms such as siderophore and/ or hydrolytic enzyme production. A total of 23 bacterial isolates from both South Africa and Argentina showing the most potential to be PGP, were identified molecularly as belonging to the genera Acinetobacter, Alcaligenes, Bacillus, Microbacterium, Micrococcus, Serratia and Staphylococcus. The ability of ten selected bacterial isolates showing multiple PGP capacity were evaluated for their plant growth promotion and mycorrhizal colonisation enhancement ability on raspberry (Rubus idaeus cv. Meeker). Significant differences in increased shoot and root dry weights were shown by the treatments compared to the uninoculated control. The highest increase in shoot and root dry weights were shown by South African (Bacillus mycoides) and Argentinean (Alcaligenes faecalis) isolates. AM fungal colonisation was significantly enhanced by the South African (Bacillus mycoides) and Argentinean (Micrococcus luteus) isolates compared to the AM fungal singly inoculated control.
- Full Text:
- Date Issued: 2013
- Authors: Ridsdale, Carmen Jane
- Date: 2013
- Subjects: Mycorrhizal fungi , Host plants , Bacteria
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4159 , http://hdl.handle.net/10962/d1018269
- Description: Arbuscular mycorrhizal (AM) fungi are naturally occurring in roots of terrestrial plants. AM fungi are capable of benefiting the host plant through various mechanisms such as enhanced nutrient supply, alleviation of environmental stress and inhibition of plant fungal pathogens. AM fungal spore-associated bacteria have been previously isolated and shown to have plant growthpromoting (PGP) abilities by several authors. Some bacterial isolates are able to promote AM fungal colonisation of host plants and are known to be mycorrhizal helper bacteria (MHB). This study focused on the isolation of AM fungal spore-associated bacteria, characterization of the isolates according to plant growth promoting abilities and evaluation of their potential to enhance plant growth and mycorrhizal colonisation. AM fungi were extracted from soils sampled from natural indigenous forest sources, raspberry (Rubus idaeus cv. Heritage) and strawberry (Fragaria ananassa) farms in South Africa and from a raspberry (Rubus idaeus cv. Autumn Bliss) plantation in Argentina. A total of 52 sporeassociated bacteria were isolated from the external and internal surfaces of AM fungal spore morphotypes from the two countries. The bacterial isolates were evaluated for their PGP abilities such as phosphate solubilisation, indole-3-acetic acid production, ammonia production and inhibition of the fungal pathogens Fusarium oxysporum and Phythophthora nicotianae through mechanisms such as siderophore and/ or hydrolytic enzyme production. A total of 23 bacterial isolates from both South Africa and Argentina showing the most potential to be PGP, were identified molecularly as belonging to the genera Acinetobacter, Alcaligenes, Bacillus, Microbacterium, Micrococcus, Serratia and Staphylococcus. The ability of ten selected bacterial isolates showing multiple PGP capacity were evaluated for their plant growth promotion and mycorrhizal colonisation enhancement ability on raspberry (Rubus idaeus cv. Meeker). Significant differences in increased shoot and root dry weights were shown by the treatments compared to the uninoculated control. The highest increase in shoot and root dry weights were shown by South African (Bacillus mycoides) and Argentinean (Alcaligenes faecalis) isolates. AM fungal colonisation was significantly enhanced by the South African (Bacillus mycoides) and Argentinean (Micrococcus luteus) isolates compared to the AM fungal singly inoculated control.
- Full Text:
- Date Issued: 2013
Production and characterization of a bioflocculant from a consortium of bacteria belonging to the halomonas and micrococcus genera
- Okaiyeto, Kunle (https://orcid.org/0000-0002-7211-714X)
- Authors: Okaiyeto, Kunle (https://orcid.org/0000-0002-7211-714X)
- Date: 2013
- Subjects: Flocculents , Bacteria
- Language: English
- Type: Master's theses , text
- Identifier: http://hdl.handle.net/10353/25822 , vital:64489
- Description: The physicochemical properties of two bioflocculant producing bacteria; Halomonas sp. Okoh and Micrococcus sp. Leo were investigated. The optimum culture conditions for the individual species were determined. All the growth conditions examined for the individual bacteria were similar. Glucose and ammonium sulphate as sole carbon and nitrogen sources respectively resulted in optimum production of bioflocculant. The flocculating activity of the bioflocculants was stimulated when Al3+ was used as the coagulating aid under acidic medium. The information obtained from individual strains was used to produce a bioflocculant from the consortium of the two bacteria. After purification, the bioflocculant yields from 1L fermentation broths were 1.213 g from Halomonas sp. Okoh, 0.738 g from Micrococcus sp. Leo and 3.51 g from the consortium. The chemical analyses of the purified bioflocculants showed that they were glycoproteins. The thermostability property of the bioflocculants was investigated between 50-100oC and the results revealed that they are heat-stable. Fourier transform infrared revealed the presence of hydroxyl, carboxyl and amino groups in the bioflocculant molecules. Scaning electron microscope (SEM) images showed the structure of each bioflocculant(s) and kaolin clay before and after flocculation. From the results obtained, the idea of using the two strains in consortium for bioflocculant production resulted in an improvement in terms of flocculating activity and yield. The bioflocculants appears to have promise as an alternative to chemical flocculants used in various industrial processes such as wastewater treatment and drinking water purification. , Thesis (MA) -- Science and Agriculture, 2013
- Full Text:
- Date Issued: 2013
- Authors: Okaiyeto, Kunle (https://orcid.org/0000-0002-7211-714X)
- Date: 2013
- Subjects: Flocculents , Bacteria
- Language: English
- Type: Master's theses , text
- Identifier: http://hdl.handle.net/10353/25822 , vital:64489
- Description: The physicochemical properties of two bioflocculant producing bacteria; Halomonas sp. Okoh and Micrococcus sp. Leo were investigated. The optimum culture conditions for the individual species were determined. All the growth conditions examined for the individual bacteria were similar. Glucose and ammonium sulphate as sole carbon and nitrogen sources respectively resulted in optimum production of bioflocculant. The flocculating activity of the bioflocculants was stimulated when Al3+ was used as the coagulating aid under acidic medium. The information obtained from individual strains was used to produce a bioflocculant from the consortium of the two bacteria. After purification, the bioflocculant yields from 1L fermentation broths were 1.213 g from Halomonas sp. Okoh, 0.738 g from Micrococcus sp. Leo and 3.51 g from the consortium. The chemical analyses of the purified bioflocculants showed that they were glycoproteins. The thermostability property of the bioflocculants was investigated between 50-100oC and the results revealed that they are heat-stable. Fourier transform infrared revealed the presence of hydroxyl, carboxyl and amino groups in the bioflocculant molecules. Scaning electron microscope (SEM) images showed the structure of each bioflocculant(s) and kaolin clay before and after flocculation. From the results obtained, the idea of using the two strains in consortium for bioflocculant production resulted in an improvement in terms of flocculating activity and yield. The bioflocculants appears to have promise as an alternative to chemical flocculants used in various industrial processes such as wastewater treatment and drinking water purification. , Thesis (MA) -- Science and Agriculture, 2013
- Full Text:
- Date Issued: 2013
Production and characterization of a bioflocculant from a consortium of bacteria belonging to the halomonas and micrococcus genera.
- Okaiyeto, Kunle (https://orcid.org/0000-0002-7211-714X)
- Authors: Okaiyeto, Kunle (https://orcid.org/0000-0002-7211-714X)
- Date: 2013
- Subjects: Flocculants , Bacteria
- Language: English
- Type: Master's theses , text
- Identifier: http://hdl.handle.net/10353/26119 , vital:64917
- Description: The physicochemical properties of two bioflocculant producing bacteria; Halomonas sp. Okoh and Micrococcus sp. Leo were investigated. The optimum culture conditions for the individual species were determined. All the growth conditions examined for the individual bacteria were similar. Glucose and ammonium sulphate as sole carbon and nitrogen sources respectively resulted in optimum production of bioflocculant. The flocculating activity of the bioflocculants was stimulated when Al3+ was used as the coagulating aid under acidic medium. The information obtained from individual strains was used to produce a bioflocculant from the consortium of the two bacteria. After purification, the bioflocculant yields from 1L fermentation broths were 1.213 g from Halomonas sp. Okoh, 0.738 g from Micrococcus sp. Leo and 3.51 g from the consortium. The chemical analyses of the purified bioflocculants showed that they were glycoproteins. The thermostability property of the bioflocculants was investigated between 50-100oC and the results revealed that they are heat-stable. Fourier transform infrared revealed the presence of hydroxyl, carboxyl and amino groups in the bioflocculant molecules. Scaning electron microscope (SEM) images showed the structure of each bioflocculant(s) and kaolin clay before and after flocculation. From the results obtained, the idea of using the two strains in consortium for bioflocculant production resulted in an improvement in terms of flocculating activity and yield. The bioflocculants appears to have promise as an alternative to chemical flocculants used in various industrial processes such as wastewater treatment and drinking water purification. , Thesis (MA) -- Faculty Science and Agriculture, 2013
- Full Text:
- Date Issued: 2013
- Authors: Okaiyeto, Kunle (https://orcid.org/0000-0002-7211-714X)
- Date: 2013
- Subjects: Flocculants , Bacteria
- Language: English
- Type: Master's theses , text
- Identifier: http://hdl.handle.net/10353/26119 , vital:64917
- Description: The physicochemical properties of two bioflocculant producing bacteria; Halomonas sp. Okoh and Micrococcus sp. Leo were investigated. The optimum culture conditions for the individual species were determined. All the growth conditions examined for the individual bacteria were similar. Glucose and ammonium sulphate as sole carbon and nitrogen sources respectively resulted in optimum production of bioflocculant. The flocculating activity of the bioflocculants was stimulated when Al3+ was used as the coagulating aid under acidic medium. The information obtained from individual strains was used to produce a bioflocculant from the consortium of the two bacteria. After purification, the bioflocculant yields from 1L fermentation broths were 1.213 g from Halomonas sp. Okoh, 0.738 g from Micrococcus sp. Leo and 3.51 g from the consortium. The chemical analyses of the purified bioflocculants showed that they were glycoproteins. The thermostability property of the bioflocculants was investigated between 50-100oC and the results revealed that they are heat-stable. Fourier transform infrared revealed the presence of hydroxyl, carboxyl and amino groups in the bioflocculant molecules. Scaning electron microscope (SEM) images showed the structure of each bioflocculant(s) and kaolin clay before and after flocculation. From the results obtained, the idea of using the two strains in consortium for bioflocculant production resulted in an improvement in terms of flocculating activity and yield. The bioflocculants appears to have promise as an alternative to chemical flocculants used in various industrial processes such as wastewater treatment and drinking water purification. , Thesis (MA) -- Faculty Science and Agriculture, 2013
- Full Text:
- Date Issued: 2013
- «
- ‹
- 1
- ›
- »