Investigating the role of mycorrhizal fungi and associated bacteria in promoting growth of citrus seedlings
- Authors: Sitole, Phumeza
- Date: 2014
- Subjects: Mycorrhizal fungi , Citrus -- South Africa , Citrus -- Diseases and pests -- Biological control -- South Africa , Fungi as biological pest control agents , Bacteria , Phytophthora , Pythium , Indoleacetic acid
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4111 , http://hdl.handle.net/10962/d1013033
- Description: South Africa is the world's second largest exporter of fresh citrus and is ranked 14th in citrus production. Fungal pathogens such as Phytophthora and Pythium cause economic losses as a result of root rot and brown rot. Mycorrhizal fungi are specialized members of the fungal community forming a mutualistic relationship with plant roots. Mycorrhizal fungal structures are known to associate with other soil microorganisms and these may contribute to improved plant growth. A diverse group of bacteria that interact with the mycorrhizal fungi are known as Mycorrhizal Helper Bacteria (MHB). The aim of this study was to investigate the role of arbuscular mycorrhiza and associated bacteria isolated from spores and determine whether they had any plant growth promoting potential. A total of 19 bacteria were isolated from arbuscular mycorrhizal spores and were molecularly identified as belonging to several Bacillus, Micrococcus, Onchrobactrum and Staphylococcus sp. All bacterial isolates were tested for plant growth promotion abilities. One Bacillus isolate was able to solubilise phosphate. Four isolates Micrococcus sp, Micrococcus leteus, Ochrobacterum sp and Ochrobacterum antropi were able to produce Indole Acetic Acid and three isolates showed potential to reduce growth of Phytophthora nicotianae, P. citrocola and P. citrophthora in in vitro plate cultures. Further tests using culture supernatants of the Bacillus sp, Micrococcus sp and Bacillus cereus confirmed their ability to inhibit or reduce growth of the three Phytophthora species in a 96 well bioassay. Bacillus sp and Bacillus cereus were able to inhibit Phytophthora spp by 95 to 100 % and Micrococcus spp was able to decrease pathogen growth by 60 to 94 %. These bacterial isolates were further evaluated for plant growth promoting abilities on citrus rough lemon seedlings alone or in combination with arbuscular mycorrhizal inoculum. Bacterial and mycorrhizal inoculants influence the increase in shoot and root biomass. Bacillus cereus in combination with mycorrhizal inoculum significantly increased seedling shoot to root ratio while root biomass was significantly increased with mycorrhizal inoculation. Due to the short duration of the trial mycorrhizal colonisation could not be assessed. It is evident that selected combinations of bacteria and mycorrhizal fungi could promote citrus seedling growth and potentially improve seedling health. Further studies under nursery conditions are recommended.
- Full Text:
- Date Issued: 2014
- Authors: Sitole, Phumeza
- Date: 2014
- Subjects: Mycorrhizal fungi , Citrus -- South Africa , Citrus -- Diseases and pests -- Biological control -- South Africa , Fungi as biological pest control agents , Bacteria , Phytophthora , Pythium , Indoleacetic acid
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4111 , http://hdl.handle.net/10962/d1013033
- Description: South Africa is the world's second largest exporter of fresh citrus and is ranked 14th in citrus production. Fungal pathogens such as Phytophthora and Pythium cause economic losses as a result of root rot and brown rot. Mycorrhizal fungi are specialized members of the fungal community forming a mutualistic relationship with plant roots. Mycorrhizal fungal structures are known to associate with other soil microorganisms and these may contribute to improved plant growth. A diverse group of bacteria that interact with the mycorrhizal fungi are known as Mycorrhizal Helper Bacteria (MHB). The aim of this study was to investigate the role of arbuscular mycorrhiza and associated bacteria isolated from spores and determine whether they had any plant growth promoting potential. A total of 19 bacteria were isolated from arbuscular mycorrhizal spores and were molecularly identified as belonging to several Bacillus, Micrococcus, Onchrobactrum and Staphylococcus sp. All bacterial isolates were tested for plant growth promotion abilities. One Bacillus isolate was able to solubilise phosphate. Four isolates Micrococcus sp, Micrococcus leteus, Ochrobacterum sp and Ochrobacterum antropi were able to produce Indole Acetic Acid and three isolates showed potential to reduce growth of Phytophthora nicotianae, P. citrocola and P. citrophthora in in vitro plate cultures. Further tests using culture supernatants of the Bacillus sp, Micrococcus sp and Bacillus cereus confirmed their ability to inhibit or reduce growth of the three Phytophthora species in a 96 well bioassay. Bacillus sp and Bacillus cereus were able to inhibit Phytophthora spp by 95 to 100 % and Micrococcus spp was able to decrease pathogen growth by 60 to 94 %. These bacterial isolates were further evaluated for plant growth promoting abilities on citrus rough lemon seedlings alone or in combination with arbuscular mycorrhizal inoculum. Bacterial and mycorrhizal inoculants influence the increase in shoot and root biomass. Bacillus cereus in combination with mycorrhizal inoculum significantly increased seedling shoot to root ratio while root biomass was significantly increased with mycorrhizal inoculation. Due to the short duration of the trial mycorrhizal colonisation could not be assessed. It is evident that selected combinations of bacteria and mycorrhizal fungi could promote citrus seedling growth and potentially improve seedling health. Further studies under nursery conditions are recommended.
- Full Text:
- Date Issued: 2014
Interactions of arbuscular mycorrhizal fungi and spore-associated bacteria
- Authors: Ridsdale, Carmen Jane
- Date: 2013
- Subjects: Mycorrhizal fungi , Host plants , Bacteria
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4159 , http://hdl.handle.net/10962/d1018269
- Description: Arbuscular mycorrhizal (AM) fungi are naturally occurring in roots of terrestrial plants. AM fungi are capable of benefiting the host plant through various mechanisms such as enhanced nutrient supply, alleviation of environmental stress and inhibition of plant fungal pathogens. AM fungal spore-associated bacteria have been previously isolated and shown to have plant growthpromoting (PGP) abilities by several authors. Some bacterial isolates are able to promote AM fungal colonisation of host plants and are known to be mycorrhizal helper bacteria (MHB). This study focused on the isolation of AM fungal spore-associated bacteria, characterization of the isolates according to plant growth promoting abilities and evaluation of their potential to enhance plant growth and mycorrhizal colonisation. AM fungi were extracted from soils sampled from natural indigenous forest sources, raspberry (Rubus idaeus cv. Heritage) and strawberry (Fragaria ananassa) farms in South Africa and from a raspberry (Rubus idaeus cv. Autumn Bliss) plantation in Argentina. A total of 52 sporeassociated bacteria were isolated from the external and internal surfaces of AM fungal spore morphotypes from the two countries. The bacterial isolates were evaluated for their PGP abilities such as phosphate solubilisation, indole-3-acetic acid production, ammonia production and inhibition of the fungal pathogens Fusarium oxysporum and Phythophthora nicotianae through mechanisms such as siderophore and/ or hydrolytic enzyme production. A total of 23 bacterial isolates from both South Africa and Argentina showing the most potential to be PGP, were identified molecularly as belonging to the genera Acinetobacter, Alcaligenes, Bacillus, Microbacterium, Micrococcus, Serratia and Staphylococcus. The ability of ten selected bacterial isolates showing multiple PGP capacity were evaluated for their plant growth promotion and mycorrhizal colonisation enhancement ability on raspberry (Rubus idaeus cv. Meeker). Significant differences in increased shoot and root dry weights were shown by the treatments compared to the uninoculated control. The highest increase in shoot and root dry weights were shown by South African (Bacillus mycoides) and Argentinean (Alcaligenes faecalis) isolates. AM fungal colonisation was significantly enhanced by the South African (Bacillus mycoides) and Argentinean (Micrococcus luteus) isolates compared to the AM fungal singly inoculated control.
- Full Text:
- Date Issued: 2013
- Authors: Ridsdale, Carmen Jane
- Date: 2013
- Subjects: Mycorrhizal fungi , Host plants , Bacteria
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4159 , http://hdl.handle.net/10962/d1018269
- Description: Arbuscular mycorrhizal (AM) fungi are naturally occurring in roots of terrestrial plants. AM fungi are capable of benefiting the host plant through various mechanisms such as enhanced nutrient supply, alleviation of environmental stress and inhibition of plant fungal pathogens. AM fungal spore-associated bacteria have been previously isolated and shown to have plant growthpromoting (PGP) abilities by several authors. Some bacterial isolates are able to promote AM fungal colonisation of host plants and are known to be mycorrhizal helper bacteria (MHB). This study focused on the isolation of AM fungal spore-associated bacteria, characterization of the isolates according to plant growth promoting abilities and evaluation of their potential to enhance plant growth and mycorrhizal colonisation. AM fungi were extracted from soils sampled from natural indigenous forest sources, raspberry (Rubus idaeus cv. Heritage) and strawberry (Fragaria ananassa) farms in South Africa and from a raspberry (Rubus idaeus cv. Autumn Bliss) plantation in Argentina. A total of 52 sporeassociated bacteria were isolated from the external and internal surfaces of AM fungal spore morphotypes from the two countries. The bacterial isolates were evaluated for their PGP abilities such as phosphate solubilisation, indole-3-acetic acid production, ammonia production and inhibition of the fungal pathogens Fusarium oxysporum and Phythophthora nicotianae through mechanisms such as siderophore and/ or hydrolytic enzyme production. A total of 23 bacterial isolates from both South Africa and Argentina showing the most potential to be PGP, were identified molecularly as belonging to the genera Acinetobacter, Alcaligenes, Bacillus, Microbacterium, Micrococcus, Serratia and Staphylococcus. The ability of ten selected bacterial isolates showing multiple PGP capacity were evaluated for their plant growth promotion and mycorrhizal colonisation enhancement ability on raspberry (Rubus idaeus cv. Meeker). Significant differences in increased shoot and root dry weights were shown by the treatments compared to the uninoculated control. The highest increase in shoot and root dry weights were shown by South African (Bacillus mycoides) and Argentinean (Alcaligenes faecalis) isolates. AM fungal colonisation was significantly enhanced by the South African (Bacillus mycoides) and Argentinean (Micrococcus luteus) isolates compared to the AM fungal singly inoculated control.
- Full Text:
- Date Issued: 2013
- «
- ‹
- 1
- ›
- »