- Title
- Classification of the difficulty in accelerating problems using GPUs
- Creator
- Tristram, Uvedale Roy
- ThesisAdvisor
- Bradshaw, Karen
- Subject
- Graphics processing units
- Subject
- Computer algorithms
- Subject
- Computer programming
- Subject
- Problem solving -- Data processing
- Date
- 2014
- Type
- Thesis
- Type
- Masters
- Type
- MSc
- Identifier
- vital:4699
- Identifier
- http://hdl.handle.net/10962/d1012978
- Description
- Scientists continually require additional processing power, as this enables them to compute larger problem sizes, use more complex models and algorithms, and solve problems previously thought computationally impractical. General-purpose computation on graphics processing units (GPGPU) can help in this regard, as there is great potential in using graphics processors to accelerate many scientific models and algorithms. However, some problems are considerably harder to accelerate than others, and it may be challenging for those new to GPGPU to ascertain the difficulty of accelerating a particular problem or seek appropriate optimisation guidance. Through what was learned in the acceleration of a hydrological uncertainty ensemble model, large numbers of k-difference string comparisons, and a radix sort, problem attributes have been identified that can assist in the evaluation of the difficulty in accelerating a problem using GPUs. The identified attributes are inherent parallelism, branch divergence, problem size, required computational parallelism, memory access pattern regularity, data transfer overhead, and thread cooperation. Using these attributes as difficulty indicators, an initial problem difficulty classification framework has been created that aids in GPU acceleration difficulty evaluation. This framework further facilitates directed guidance on suggested optimisations and required knowledge based on problem classification, which has been demonstrated for the aforementioned accelerated problems. It is anticipated that this framework, or a derivative thereof, will prove to be a useful resource for new or novice GPGPU developers in the evaluation of potential problems for GPU acceleration.
- Format
- 151 p., pdf
- Publisher
- Rhodes University, Faculty of Science, Computer Science
- Language
- English
- Rights
- Tristram, Uvedale Roy
- Hits: 1490
- Visitors: 1611
- Downloads: 136
Thumbnail | File | Description | Size | Format | |||
---|---|---|---|---|---|---|---|
View Details | SOURCEPDF | 4 MB | Adobe Acrobat PDF | View Details |