Advances in platinum-amine chemotherapeutic agents : their chemistry and applicationc
- Authors: Jaganath, Yatish
- Date: 2009
- Subjects: Coordination compounds , Antineoplastic antibiotics , Cancer -- Chemotherapy
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:10446 , http://hdl.handle.net/10948/d1021222
- Description: The research conducted in this study focussed on advancing the knowledge database of diamineplatinum complexes on two frontiers: 1) the development of novel anticancer complexes, and 2) improvements in their synthetic chemistry. Novel square-planar dichloro and oxalato platinum(II) complexes were synthesized as potential anticancer agents in accordance with a comprehensive set of factors identified as being significant in optimizing such action. The nonleaving ligands consisted of asymmetric chelating chiral diamines of the form 1- (1-R-imidazol-2yl)(R')methanamine (R representing methyl, butyl and R' methyl, phenyl). The complexes were characterized by a host of spectral, thermal and crystallographic techniques. In addition, the stabilities of the complexes were monitored in aqueous and saline solutions. Cytotoxicity screening on three cultured cancer cell lines (MCF-7, HeLa and HT29) indicated the compounds, present as their respective racemates, to have rather modest activities relative to cisplatin; with complexes having the smallest substituents, R,R' = methyl, being most active. In recognition of the limitations of traditional silver-based syntheses of oxalatoplatinum(II) complexes, innovative non-silver methods were developed using the well known cancer drug, oxaliplatin, (trans-R,R-1,2- diaminocyclohexane)oxalatoplatinum(II), as a prototype. These involved direct ligand exchange reactions of the dichloro precursor, (trans-R,R-1,2- diaminocyclohexane)dichloroplatinum(II), with tetrabutylammonium oxalate in essentially non-aqueous solvents. A 90:10 mixture of isoamyl alcohol (3-methyl- 1-butanol):water, proved to be a promising solvent, enabling the recovery of pure oxaliplatin (~98 percent) after 9 hours at 88 °C in yields of up to 86 percent. In light of the perceived unique mode of anticancer action available to mononitroplatinum(IV) complexes (i.e. their STAT3-binding potential), octahedral diamineoxalatoplatinum(IV) complexes containing axially-coordinated nitro and halo co-ligands were synthesized and extensively characterized. Electrochemical studies revealed trends in reduction potential which could be correlated to structural / chemical traits of the coordinated diamine and axial ligands. The similarities of the determined cytotoxicities of the platinum(IV) compounds and their respective platinum(II) analogues, implicated reduction as a means of activation of the platinum(IV) complexes.
- Full Text:
- Date Issued: 2009
- Authors: Jaganath, Yatish
- Date: 2009
- Subjects: Coordination compounds , Antineoplastic antibiotics , Cancer -- Chemotherapy
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:10446 , http://hdl.handle.net/10948/d1021222
- Description: The research conducted in this study focussed on advancing the knowledge database of diamineplatinum complexes on two frontiers: 1) the development of novel anticancer complexes, and 2) improvements in their synthetic chemistry. Novel square-planar dichloro and oxalato platinum(II) complexes were synthesized as potential anticancer agents in accordance with a comprehensive set of factors identified as being significant in optimizing such action. The nonleaving ligands consisted of asymmetric chelating chiral diamines of the form 1- (1-R-imidazol-2yl)(R')methanamine (R representing methyl, butyl and R' methyl, phenyl). The complexes were characterized by a host of spectral, thermal and crystallographic techniques. In addition, the stabilities of the complexes were monitored in aqueous and saline solutions. Cytotoxicity screening on three cultured cancer cell lines (MCF-7, HeLa and HT29) indicated the compounds, present as their respective racemates, to have rather modest activities relative to cisplatin; with complexes having the smallest substituents, R,R' = methyl, being most active. In recognition of the limitations of traditional silver-based syntheses of oxalatoplatinum(II) complexes, innovative non-silver methods were developed using the well known cancer drug, oxaliplatin, (trans-R,R-1,2- diaminocyclohexane)oxalatoplatinum(II), as a prototype. These involved direct ligand exchange reactions of the dichloro precursor, (trans-R,R-1,2- diaminocyclohexane)dichloroplatinum(II), with tetrabutylammonium oxalate in essentially non-aqueous solvents. A 90:10 mixture of isoamyl alcohol (3-methyl- 1-butanol):water, proved to be a promising solvent, enabling the recovery of pure oxaliplatin (~98 percent) after 9 hours at 88 °C in yields of up to 86 percent. In light of the perceived unique mode of anticancer action available to mononitroplatinum(IV) complexes (i.e. their STAT3-binding potential), octahedral diamineoxalatoplatinum(IV) complexes containing axially-coordinated nitro and halo co-ligands were synthesized and extensively characterized. Electrochemical studies revealed trends in reduction potential which could be correlated to structural / chemical traits of the coordinated diamine and axial ligands. The similarities of the determined cytotoxicities of the platinum(IV) compounds and their respective platinum(II) analogues, implicated reduction as a means of activation of the platinum(IV) complexes.
- Full Text:
- Date Issued: 2009
Solvent-free synthesis of bisferrocenylimines and their coordination to rhodium (I)
- Authors: Kleyi, Phumelele Eldridge
- Date: 2009
- Subjects: Organic compounds -- Synthesis , Organic solvents , Solution (Chemistry) , Chemistry, Organic , Coordination compounds
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:10393 , http://hdl.handle.net/10948/1053 , Organic compounds -- Synthesis , Organic solvents , Solution (Chemistry) , Chemistry, Organic , Coordination compounds
- Description: Solvent-free reactions possess advantages compared to the solvent route, such as shorter reaction times, less use of energy, better yields, etc. Herein, the synthesis and characterization of bisferrocenylimines and arylbisamines are described. Reduction of the above compounds with LAH resulted in the formation of bisferrocenylamines and arylbisamines, respectively. The coordination chemistry of all the above compounds to rhodium(I) is also discussed in the prepared complexes [Rh(COD)(NN)]ClO4, where NN = bisferrocenylimines, and [Rh(COD)(NN)]BF4, where NN = bisferrocenylamines and arylbisamines. X-ray crystal structures of the complexes [Rh(COD)(NN)]ClO4 ([3.2] and [3.3]) have been obtained. Complexes of the type [Rh(COD)(NN)]BF4 were characterized with IR and UV-vis spectroscopy, cyclic voltammetry and conductometry. The catalytic activity of the complexes was also investigated: [Rh(COD)(NN)]ClO4 for the polymerization of phenylacetylene and [Rh(COD)(NN)]BF4 for the hydroformylation of styrene.
- Full Text:
- Date Issued: 2009
- Authors: Kleyi, Phumelele Eldridge
- Date: 2009
- Subjects: Organic compounds -- Synthesis , Organic solvents , Solution (Chemistry) , Chemistry, Organic , Coordination compounds
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:10393 , http://hdl.handle.net/10948/1053 , Organic compounds -- Synthesis , Organic solvents , Solution (Chemistry) , Chemistry, Organic , Coordination compounds
- Description: Solvent-free reactions possess advantages compared to the solvent route, such as shorter reaction times, less use of energy, better yields, etc. Herein, the synthesis and characterization of bisferrocenylimines and arylbisamines are described. Reduction of the above compounds with LAH resulted in the formation of bisferrocenylamines and arylbisamines, respectively. The coordination chemistry of all the above compounds to rhodium(I) is also discussed in the prepared complexes [Rh(COD)(NN)]ClO4, where NN = bisferrocenylimines, and [Rh(COD)(NN)]BF4, where NN = bisferrocenylamines and arylbisamines. X-ray crystal structures of the complexes [Rh(COD)(NN)]ClO4 ([3.2] and [3.3]) have been obtained. Complexes of the type [Rh(COD)(NN)]BF4 were characterized with IR and UV-vis spectroscopy, cyclic voltammetry and conductometry. The catalytic activity of the complexes was also investigated: [Rh(COD)(NN)]ClO4 for the polymerization of phenylacetylene and [Rh(COD)(NN)]BF4 for the hydroformylation of styrene.
- Full Text:
- Date Issued: 2009
- «
- ‹
- 1
- ›
- »