Finite element modelling of a magma chamber surrounded by country-rock, with particular reference to the groundwater flow in sections of different permeability
- Authors: Remsing, Carmen
- Date: 2003 , 2013-05-23
- Subjects: Magmas , Groundwater flow
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5508 , http://hdl.handle.net/10962/d1007537 , Magmas , Groundwater flow
- Description: This thesis presents results of two-dimensional finite element modelling of a magma chamber surrounded by country-rock containing a section of high permeability. The high permeability section in the country-rock simulates structure that is predominant in controlling the groundwater convection pattern and resulting mineral deposits. The models have analogies in nature: for instance the gold mines in the Massif Central of France, the Pogo mine in Alaska and the Pilgrim's Rest gold field in South Africa. This is a complicated coupled system involving fluid flow and heat transfer under extreme conditions. The magma in the chamber convects and as it cools the heat liberated causes convection in the groundwater contained in the surrounding country-rock. This convection in turn affects the rate of liberation of heat from the magma. The software used for the modelling, FLOTRAN, is the computational fluid dynamics component of the commercial ANSYS package. The results obtained describe in detail the flow pattern in the magma chamber, the country-rock and high permeability section thereof. During the cooling of the magma chamber the groundwater convects more vigorously in the high permeability section than elsewhere, and a convection cell is seen forming within this region. This provides a mechanism for hydrothermal formation of valuable mineral deposits in the structure near a magma chamber. It is found that the relationship between the velocity of the flow in the cell and the temperature of the magma chamber is well represented by a first order linear differential equation, providing a simple understanding of this process, , KMBT_363 , Adobe Acrobat 9.54 Paper Capture Plug-in
- Full Text:
- Date Issued: 2003
- Authors: Remsing, Carmen
- Date: 2003 , 2013-05-23
- Subjects: Magmas , Groundwater flow
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5508 , http://hdl.handle.net/10962/d1007537 , Magmas , Groundwater flow
- Description: This thesis presents results of two-dimensional finite element modelling of a magma chamber surrounded by country-rock containing a section of high permeability. The high permeability section in the country-rock simulates structure that is predominant in controlling the groundwater convection pattern and resulting mineral deposits. The models have analogies in nature: for instance the gold mines in the Massif Central of France, the Pogo mine in Alaska and the Pilgrim's Rest gold field in South Africa. This is a complicated coupled system involving fluid flow and heat transfer under extreme conditions. The magma in the chamber convects and as it cools the heat liberated causes convection in the groundwater contained in the surrounding country-rock. This convection in turn affects the rate of liberation of heat from the magma. The software used for the modelling, FLOTRAN, is the computational fluid dynamics component of the commercial ANSYS package. The results obtained describe in detail the flow pattern in the magma chamber, the country-rock and high permeability section thereof. During the cooling of the magma chamber the groundwater convects more vigorously in the high permeability section than elsewhere, and a convection cell is seen forming within this region. This provides a mechanism for hydrothermal formation of valuable mineral deposits in the structure near a magma chamber. It is found that the relationship between the velocity of the flow in the cell and the temperature of the magma chamber is well represented by a first order linear differential equation, providing a simple understanding of this process, , KMBT_363 , Adobe Acrobat 9.54 Paper Capture Plug-in
- Full Text:
- Date Issued: 2003
Finite element simulations of shear aggregation as a mechanism to form platinum group elements (PGEs) in dyke-like ore bodies
- Authors: Mbandezi, Mxolisi Louis
- Date: 2002
- Subjects: Platinum group , Magmas , Shear flow , Geophysics , Terrestrial heat flow
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5561 , http://hdl.handle.net/10962/d1018249
- Description: This research describes a two-dimensional modelling effort of heat and mass transport in simplified intrusive models of sills and their feeder dykes. These simplified models resembled a complex intrusive system such as the Great Dyke of Zimbabwe. This study investigated the impact of variable geometry to transport processes in two ways. First the time evolution of heat and mass transport during cooling was investigated. Then emphasis was placed on the application of convective scavenging as a mechanism that leads to the formation of minerals of economic interest, in particular the Platinum Group Elements (PGEs). The Navier-Stokes equations employed generated regions of high shear within the magma where we expected enhanced collisions between the immiscible sulphide liquid particles and PGEs. These collisions scavenge PGEs from the primary melt, aggregate and concentrate it to form PGEs enrichment in zero shear zones. The PGEs scavenge; concentrate and 'glue' in zero shear zones in the early history of convection because of viscosity and dispersive pressure (Bagnold effect). The effect of increasing the geometry size enhances scavenging, creates bigger zero shear zones with dilute concentrate of PGEs but you get high shear near the roots of the dyke/sill where the concentration will not be dilute. The time evolution calculations show that increasing the size of the magma chamber results in stronger initial convection currents for large magma models than for small ones. However, convection takes, approximately the same time to cease for both models. The research concludes that the time evolution for convective heat transfer is dependent on the viscosity rather than on geometry size. However, conductive heat transfer to the e-folding temperature was almost six times as long for the large model (M4) than the small one (M2). Variable viscosity as a physical property was applied to models 2 and 4 only. Video animations that simulate the cooling process for these models are enclosed in a CD at the back of this thesis. These simulations provide information with regard to the emplacement history and distribution of PGEs ore bodies. This will assist the reserve estimation and the location of economic minerals.
- Full Text:
- Date Issued: 2002
- Authors: Mbandezi, Mxolisi Louis
- Date: 2002
- Subjects: Platinum group , Magmas , Shear flow , Geophysics , Terrestrial heat flow
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5561 , http://hdl.handle.net/10962/d1018249
- Description: This research describes a two-dimensional modelling effort of heat and mass transport in simplified intrusive models of sills and their feeder dykes. These simplified models resembled a complex intrusive system such as the Great Dyke of Zimbabwe. This study investigated the impact of variable geometry to transport processes in two ways. First the time evolution of heat and mass transport during cooling was investigated. Then emphasis was placed on the application of convective scavenging as a mechanism that leads to the formation of minerals of economic interest, in particular the Platinum Group Elements (PGEs). The Navier-Stokes equations employed generated regions of high shear within the magma where we expected enhanced collisions between the immiscible sulphide liquid particles and PGEs. These collisions scavenge PGEs from the primary melt, aggregate and concentrate it to form PGEs enrichment in zero shear zones. The PGEs scavenge; concentrate and 'glue' in zero shear zones in the early history of convection because of viscosity and dispersive pressure (Bagnold effect). The effect of increasing the geometry size enhances scavenging, creates bigger zero shear zones with dilute concentrate of PGEs but you get high shear near the roots of the dyke/sill where the concentration will not be dilute. The time evolution calculations show that increasing the size of the magma chamber results in stronger initial convection currents for large magma models than for small ones. However, convection takes, approximately the same time to cease for both models. The research concludes that the time evolution for convective heat transfer is dependent on the viscosity rather than on geometry size. However, conductive heat transfer to the e-folding temperature was almost six times as long for the large model (M4) than the small one (M2). Variable viscosity as a physical property was applied to models 2 and 4 only. Video animations that simulate the cooling process for these models are enclosed in a CD at the back of this thesis. These simulations provide information with regard to the emplacement history and distribution of PGEs ore bodies. This will assist the reserve estimation and the location of economic minerals.
- Full Text:
- Date Issued: 2002
Finite element modelling of magma convection and attendant groundwater flow
- Authors: Harrison, Keith
- Date: 1998
- Subjects: Groundwater flow , Magmas
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5467 , http://hdl.handle.net/10962/d1005252 , Groundwater flow , Magmas
- Description: This thesis describes preliminary two- and three-dimensional modelling of mass and heat transport of hot, molten magma in crustal intrusions and of the associated thermally induced flow of groundwater contained in the surrounding country rock. The aim of such modelling is to create a tool with which to predict the location of mineral deposits formed by the transport and subsequent precipitation of minerals dissolved in the convecting groundwater. The momentum equations (Navier-Stokes equations), continuity equation and energy equation are used in conjunction with specially constructed density and viscosity relationships to govern the mass and heat transport processes of magma and groundwater. Finite element methods are used to solve the equations numerically for some simple model geometries. These methods are implemented by a commercial computer software code which is manipulated with a control program constructed by the author for the purpose. The models are of simple two- or three-dimensional geometries which all have an enclosed magma chamber surrounded completely by a shell of country rock through which groundwater is free to move. Modelling begins immediately after the intrusive event when the magma (in most cases rhyolitic) is at its greatest temperature. Heat is allowed to flow from the magma into the country rock causing thermal convection of the groundwater contained therein. The effect of the country rock as a porous medium on the flow of groundwater is modelled by including a distributed resistance term in the momentum equation. The computer code that controls the modelling is such that adaptions made to the models to represent real physical intrusive systems are trivial. Results of the research at this stage allow approximate prediction of the location of mineral deposits. Enhanced predictions can be made by effecting improvements to the models such as a more detailed representation of chemical processes, adaption of the computer code to allow multiple injections of magma and the modelling of frozen magma as a porous medium which admits the flow of groundwater.
- Full Text:
- Date Issued: 1998
- Authors: Harrison, Keith
- Date: 1998
- Subjects: Groundwater flow , Magmas
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5467 , http://hdl.handle.net/10962/d1005252 , Groundwater flow , Magmas
- Description: This thesis describes preliminary two- and three-dimensional modelling of mass and heat transport of hot, molten magma in crustal intrusions and of the associated thermally induced flow of groundwater contained in the surrounding country rock. The aim of such modelling is to create a tool with which to predict the location of mineral deposits formed by the transport and subsequent precipitation of minerals dissolved in the convecting groundwater. The momentum equations (Navier-Stokes equations), continuity equation and energy equation are used in conjunction with specially constructed density and viscosity relationships to govern the mass and heat transport processes of magma and groundwater. Finite element methods are used to solve the equations numerically for some simple model geometries. These methods are implemented by a commercial computer software code which is manipulated with a control program constructed by the author for the purpose. The models are of simple two- or three-dimensional geometries which all have an enclosed magma chamber surrounded completely by a shell of country rock through which groundwater is free to move. Modelling begins immediately after the intrusive event when the magma (in most cases rhyolitic) is at its greatest temperature. Heat is allowed to flow from the magma into the country rock causing thermal convection of the groundwater contained therein. The effect of the country rock as a porous medium on the flow of groundwater is modelled by including a distributed resistance term in the momentum equation. The computer code that controls the modelling is such that adaptions made to the models to represent real physical intrusive systems are trivial. Results of the research at this stage allow approximate prediction of the location of mineral deposits. Enhanced predictions can be made by effecting improvements to the models such as a more detailed representation of chemical processes, adaption of the computer code to allow multiple injections of magma and the modelling of frozen magma as a porous medium which admits the flow of groundwater.
- Full Text:
- Date Issued: 1998
- «
- ‹
- 1
- ›
- »