Synthesis, photochemical and photophysical properties of phthalocyanine derivatives
- Authors: Maqanda, Weziwe Theorine
- Date: 2005 , 2013-06-18
- Subjects: Photochemotherapy , Phthalocyanines , Zinc , Magnesium
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4436 , http://hdl.handle.net/10962/d1007472 , Photochemotherapy , Phthalocyanines , Zinc , Magnesium
- Description: Substituted zinc and magnesium phthalocyanine and porphyrazine derivatives were synthesized according to the reported procedures. The magnesium and zinc phthalocyanine and porphyrazine derivatives were synthesized by ring enlargement of subphthalocyanine and statistical condensation of the two phthalonitrile derivatives. Characterization of the complexes involved the use of infrared spectroscopy, nuclear magnetic resonance spectroscopy, ultraviolet and visible spectroscopy, and Maldi-TOF spectroscopy (for selected compounds) and elemental analysis. Photochemical and photophysical properties of the complexes in non-aqueous solution was then investigated. Photobleaching quantum yields are in order of 10⁻⁵ indicating their relative photostability. Complexes containing more electron-donating substituents were more easily oxidized. For complexes 66 and 69 (as these complexes have the same number of substituents but differ in the metal center) photobleaching quantum yield for the ZincPc complex 69 was slightly less than that of the MgPc complex 66. Singlet oxygen quantum yields of the various complexes in DMSO using diphenylisobenzofuran (DPBF) as a quencher in organic solvents were determined. Singlet oxygen quantum yields of the complexes range from 0.23 to 0.67. High values of Φ[subscript]Δ ZnPc complexes was observed compared to the corresponding MgPc, complexes. This was evidenced by complexes 66 and 69 with Φ[subscript]Δ values of Φ[subscript]Δ = 0.26 and 0.40, respectively. Varying number of phenoxy substituents, complex 71 gave significantly large value of Φ[subscript]Δ compared to 70 (that is, the presence of more electron-donating substituted group, gave higher singlet oxygen quantum yields (0 .67 and 0.25 for 71 and 70 repectively). The triplet quantum yields and triplet lifetimes were determined by laser flash photolysis for selected compounds. The triplet quantum yields increase as the number of substituents increases e.g 68 > 67 > 66. Comparing porphyrazine complexes (63, 64 and 65), 63 with benzene attached to the ring, has higher triplet state lifetime (420 μs) compared to 64 and 65 containing long alkyl chain and tertbutyl substituents, 350 and 360 μs,respectively). The observed Φ[subscript]f values for 68 and 63 were quiet suprising, since low values are observed compared to the rest of the complexes (e.g 0.03 and 0.02 respectively). Although these values seem so low, they are sufficient for fluorescence imaging applications. The Φ[subscript]f values for the complexes under study are within the range reported for complexes currently used for PDT. , KMBT_363 , Adobe Acrobat 9.54 Paper Capture Plug-in
- Full Text:
- Date Issued: 2005
- Authors: Maqanda, Weziwe Theorine
- Date: 2005 , 2013-06-18
- Subjects: Photochemotherapy , Phthalocyanines , Zinc , Magnesium
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4436 , http://hdl.handle.net/10962/d1007472 , Photochemotherapy , Phthalocyanines , Zinc , Magnesium
- Description: Substituted zinc and magnesium phthalocyanine and porphyrazine derivatives were synthesized according to the reported procedures. The magnesium and zinc phthalocyanine and porphyrazine derivatives were synthesized by ring enlargement of subphthalocyanine and statistical condensation of the two phthalonitrile derivatives. Characterization of the complexes involved the use of infrared spectroscopy, nuclear magnetic resonance spectroscopy, ultraviolet and visible spectroscopy, and Maldi-TOF spectroscopy (for selected compounds) and elemental analysis. Photochemical and photophysical properties of the complexes in non-aqueous solution was then investigated. Photobleaching quantum yields are in order of 10⁻⁵ indicating their relative photostability. Complexes containing more electron-donating substituents were more easily oxidized. For complexes 66 and 69 (as these complexes have the same number of substituents but differ in the metal center) photobleaching quantum yield for the ZincPc complex 69 was slightly less than that of the MgPc complex 66. Singlet oxygen quantum yields of the various complexes in DMSO using diphenylisobenzofuran (DPBF) as a quencher in organic solvents were determined. Singlet oxygen quantum yields of the complexes range from 0.23 to 0.67. High values of Φ[subscript]Δ ZnPc complexes was observed compared to the corresponding MgPc, complexes. This was evidenced by complexes 66 and 69 with Φ[subscript]Δ values of Φ[subscript]Δ = 0.26 and 0.40, respectively. Varying number of phenoxy substituents, complex 71 gave significantly large value of Φ[subscript]Δ compared to 70 (that is, the presence of more electron-donating substituted group, gave higher singlet oxygen quantum yields (0 .67 and 0.25 for 71 and 70 repectively). The triplet quantum yields and triplet lifetimes were determined by laser flash photolysis for selected compounds. The triplet quantum yields increase as the number of substituents increases e.g 68 > 67 > 66. Comparing porphyrazine complexes (63, 64 and 65), 63 with benzene attached to the ring, has higher triplet state lifetime (420 μs) compared to 64 and 65 containing long alkyl chain and tertbutyl substituents, 350 and 360 μs,respectively). The observed Φ[subscript]f values for 68 and 63 were quiet suprising, since low values are observed compared to the rest of the complexes (e.g 0.03 and 0.02 respectively). Although these values seem so low, they are sufficient for fluorescence imaging applications. The Φ[subscript]f values for the complexes under study are within the range reported for complexes currently used for PDT. , KMBT_363 , Adobe Acrobat 9.54 Paper Capture Plug-in
- Full Text:
- Date Issued: 2005
The development of a method for the determination of microgram amounts of magnesium by atomic absorption
- Authors: Taylor, John Douglas
- Date: 1963
- Subjects: Atomic absorption spectroscopy -- Instruments , Magnesium
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4507 , http://hdl.handle.net/10962/d1013344
- Description: This thesis includes a description of modifications of the Hilger atomic absorption apparatus, which was used for most of the work. These modifications were restricted to the atomiser and burner, which were replaced by a modified "Eel" flame. photometer atomiser-burner and resulted in improved sensitivity and instrumental stability for the atomic absorption of magnesium. A comparison of the performance of this unit with that of the unmodified Hilger apparatus is given. A "Handigas" butane-propane mixture)-air flame was used for most of this work, but a coal-gas-air flame was also studied and found to give slightly greater sensitivity. The method was found to be subject to interference from many elements. Strontium salts, employed as releasing agents to overcome the effect of other elements, were not completely effective as milligram amounts of several elements interfered even when strontium was present. Among the more serious interfering elements are: aluminium, iron, manganese and zirconium (less than 20 p.p.m. interfere); the alkali and alkaline earth metal salts (more than 200-500 p.p.m. interfere); phosphate (more than 100 p.p.m. P₂0₅ uranium (more than 4,000 p.p.m.); arsenate and vanadate. An attempt is made to explain the mechanism of some of these interfering effects. A combination of strontium salt and acetyl acetone was found to over-come the effects of small amounts of several elements that form complexes with acetyl acetone (e.g. iron and aluminium) far more effectively than strontium alone. Larger amounts of many interfering elements are removed by a solvent extraction procedure employing acetyl acetone and chloroform. Elements which cannot be removed by this means may be separated by anion-exchange, volatilisation, electrolysis or precipitation. A spiking technique, which compensates JT/GB for the effects of small amounts of interfering elements, is described and enables many samples to be analysed without prior separations. The method described has good sensitivity (the limit of determination is approximately 1 microgram of magnesium in 50 ml. of solution). It has been applied to the analysis of clay samples, iron ore, limestone and uranium metal, oxides and processing solutions. The coefficient of variation of the method was determined using two clay samples and results of 2.0 and 4.6 percent, at magnesium oxide concentrations of 0.65 and 0.22 percent respectively, wore obtained. The speed of the method compares favourably with others described for the determination of microgram amounts of magnesium, but increases if large amounts of interfering elements are present.
- Full Text:
- Date Issued: 1963
- Authors: Taylor, John Douglas
- Date: 1963
- Subjects: Atomic absorption spectroscopy -- Instruments , Magnesium
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4507 , http://hdl.handle.net/10962/d1013344
- Description: This thesis includes a description of modifications of the Hilger atomic absorption apparatus, which was used for most of the work. These modifications were restricted to the atomiser and burner, which were replaced by a modified "Eel" flame. photometer atomiser-burner and resulted in improved sensitivity and instrumental stability for the atomic absorption of magnesium. A comparison of the performance of this unit with that of the unmodified Hilger apparatus is given. A "Handigas" butane-propane mixture)-air flame was used for most of this work, but a coal-gas-air flame was also studied and found to give slightly greater sensitivity. The method was found to be subject to interference from many elements. Strontium salts, employed as releasing agents to overcome the effect of other elements, were not completely effective as milligram amounts of several elements interfered even when strontium was present. Among the more serious interfering elements are: aluminium, iron, manganese and zirconium (less than 20 p.p.m. interfere); the alkali and alkaline earth metal salts (more than 200-500 p.p.m. interfere); phosphate (more than 100 p.p.m. P₂0₅ uranium (more than 4,000 p.p.m.); arsenate and vanadate. An attempt is made to explain the mechanism of some of these interfering effects. A combination of strontium salt and acetyl acetone was found to over-come the effects of small amounts of several elements that form complexes with acetyl acetone (e.g. iron and aluminium) far more effectively than strontium alone. Larger amounts of many interfering elements are removed by a solvent extraction procedure employing acetyl acetone and chloroform. Elements which cannot be removed by this means may be separated by anion-exchange, volatilisation, electrolysis or precipitation. A spiking technique, which compensates JT/GB for the effects of small amounts of interfering elements, is described and enables many samples to be analysed without prior separations. The method described has good sensitivity (the limit of determination is approximately 1 microgram of magnesium in 50 ml. of solution). It has been applied to the analysis of clay samples, iron ore, limestone and uranium metal, oxides and processing solutions. The coefficient of variation of the method was determined using two clay samples and results of 2.0 and 4.6 percent, at magnesium oxide concentrations of 0.65 and 0.22 percent respectively, wore obtained. The speed of the method compares favourably with others described for the determination of microgram amounts of magnesium, but increases if large amounts of interfering elements are present.
- Full Text:
- Date Issued: 1963
- «
- ‹
- 1
- ›
- »