An analysis of fusing advanced malware email protection logs, malware intelligence and active directory attributes as an instrument for threat intelligence
- Authors: Vermeulen, Japie
- Date: 2018
- Subjects: Malware (Computer software) , Computer networks Security measures , Data mining , Phishing , Data logging , Quantitative research
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/63922 , vital:28506
- Description: After more than four decades email is still the most widely used electronic communication medium today. This electronic communication medium has evolved into an electronic weapon of choice for cyber criminals ranging from the novice to the elite. As cyber criminals evolve with tools, tactics and procedures, so too are technology vendors coming forward with a variety of advanced malware protection systems. However, even if an organization adopts such a system, there is still the daily challenge of interpreting the log data and understanding the type of malicious email attack, including who the target was and what the payload was. This research examines a six month data set obtained from an advanced malware email protection system from a bank in South Africa. Extensive data fusion techniques are used to provide deeper insight into the data by blending these with malware intelligence and business context. The primary data set is fused with malware intelligence to identify the different malware families associated with the samples. Active Directory attributes such as the business cluster, department and job title of users targeted by malware are also fused into the combined data. This study provides insight into malware attacks experienced in the South African financial services sector. For example, most of the malware samples identified belonged to different types of ransomware families distributed by known botnets. However, indicators of targeted attacks were observed based on particular employees targeted with exploit code and specific strains of malware. Furthermore, a short time span between newly discovered vulnerabilities and the use of malicious code to exploit such vulnerabilities through email were observed in this study. The fused data set provided the context to answer the “who”, “what”, “where” and “when”. The proposed methodology can be applied to any organization to provide insight into the malware threats identified by advanced malware email protection systems. In addition, the fused data set provides threat intelligence that could be used to strengthen the cyber defences of an organization against cyber threats.
- Full Text:
- Date Issued: 2018
- Authors: Vermeulen, Japie
- Date: 2018
- Subjects: Malware (Computer software) , Computer networks Security measures , Data mining , Phishing , Data logging , Quantitative research
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/63922 , vital:28506
- Description: After more than four decades email is still the most widely used electronic communication medium today. This electronic communication medium has evolved into an electronic weapon of choice for cyber criminals ranging from the novice to the elite. As cyber criminals evolve with tools, tactics and procedures, so too are technology vendors coming forward with a variety of advanced malware protection systems. However, even if an organization adopts such a system, there is still the daily challenge of interpreting the log data and understanding the type of malicious email attack, including who the target was and what the payload was. This research examines a six month data set obtained from an advanced malware email protection system from a bank in South Africa. Extensive data fusion techniques are used to provide deeper insight into the data by blending these with malware intelligence and business context. The primary data set is fused with malware intelligence to identify the different malware families associated with the samples. Active Directory attributes such as the business cluster, department and job title of users targeted by malware are also fused into the combined data. This study provides insight into malware attacks experienced in the South African financial services sector. For example, most of the malware samples identified belonged to different types of ransomware families distributed by known botnets. However, indicators of targeted attacks were observed based on particular employees targeted with exploit code and specific strains of malware. Furthermore, a short time span between newly discovered vulnerabilities and the use of malicious code to exploit such vulnerabilities through email were observed in this study. The fused data set provided the context to answer the “who”, “what”, “where” and “when”. The proposed methodology can be applied to any organization to provide insight into the malware threats identified by advanced malware email protection systems. In addition, the fused data set provides threat intelligence that could be used to strengthen the cyber defences of an organization against cyber threats.
- Full Text:
- Date Issued: 2018
DNS traffic based classifiers for the automatic classification of botnet domains
- Authors: Stalmans, Etienne Raymond
- Date: 2014
- Subjects: Denial of service attacks -- Research , Computer security -- Research , Internet -- Security measures -- Research , Malware (Computer software) , Spam (Electronic mail) , Phishing , Command and control systems
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4684 , http://hdl.handle.net/10962/d1007739
- Description: Networks of maliciously compromised computers, known as botnets, consisting of thousands of hosts have emerged as a serious threat to Internet security in recent years. These compromised systems, under the control of an operator are used to steal data, distribute malware and spam, launch phishing attacks and in Distributed Denial-of-Service (DDoS) attacks. The operators of these botnets use Command and Control (C2) servers to communicate with the members of the botnet and send commands. The communications channels between the C2 nodes and endpoints have employed numerous detection avoidance mechanisms to prevent the shutdown of the C2 servers. Two prevalent detection avoidance techniques used by current botnets are algorithmically generated domain names and DNS Fast-Flux. The use of these mechanisms can however be observed and used to create distinct signatures that in turn can be used to detect DNS domains being used for C2 operation. This report details research conducted into the implementation of three classes of classification techniques that exploit these signatures in order to accurately detect botnet traffic. The techniques described make use of the traffic from DNS query responses created when members of a botnet try to contact the C2 servers. Traffic observation and categorisation is passive from the perspective of the communicating nodes. The first set of classifiers explored employ frequency analysis to detect the algorithmically generated domain names used by botnets. These were found to have a high degree of accuracy with a low false positive rate. The characteristics of Fast-Flux domains are used in the second set of classifiers. It is shown that using these characteristics Fast-Flux domains can be accurately identified and differentiated from legitimate domains (such as Content Distribution Networks exhibit similar behaviour). The final set of classifiers use spatial autocorrelation to detect Fast-Flux domains based on the geographic distribution of the botnet C2 servers to which the detected domains resolve. It is shown that botnet C2 servers can be detected solely based on their geographic location. This technique is shown to clearly distinguish between malicious and legitimate domains. The implemented classifiers are lightweight and use existing network traffic to detect botnets and thus do not require major architectural changes to the network. The performance impact of implementing classification of DNS traffic is examined and it is shown that the performance impact is at an acceptable level.
- Full Text:
- Date Issued: 2014
- Authors: Stalmans, Etienne Raymond
- Date: 2014
- Subjects: Denial of service attacks -- Research , Computer security -- Research , Internet -- Security measures -- Research , Malware (Computer software) , Spam (Electronic mail) , Phishing , Command and control systems
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4684 , http://hdl.handle.net/10962/d1007739
- Description: Networks of maliciously compromised computers, known as botnets, consisting of thousands of hosts have emerged as a serious threat to Internet security in recent years. These compromised systems, under the control of an operator are used to steal data, distribute malware and spam, launch phishing attacks and in Distributed Denial-of-Service (DDoS) attacks. The operators of these botnets use Command and Control (C2) servers to communicate with the members of the botnet and send commands. The communications channels between the C2 nodes and endpoints have employed numerous detection avoidance mechanisms to prevent the shutdown of the C2 servers. Two prevalent detection avoidance techniques used by current botnets are algorithmically generated domain names and DNS Fast-Flux. The use of these mechanisms can however be observed and used to create distinct signatures that in turn can be used to detect DNS domains being used for C2 operation. This report details research conducted into the implementation of three classes of classification techniques that exploit these signatures in order to accurately detect botnet traffic. The techniques described make use of the traffic from DNS query responses created when members of a botnet try to contact the C2 servers. Traffic observation and categorisation is passive from the perspective of the communicating nodes. The first set of classifiers explored employ frequency analysis to detect the algorithmically generated domain names used by botnets. These were found to have a high degree of accuracy with a low false positive rate. The characteristics of Fast-Flux domains are used in the second set of classifiers. It is shown that using these characteristics Fast-Flux domains can be accurately identified and differentiated from legitimate domains (such as Content Distribution Networks exhibit similar behaviour). The final set of classifiers use spatial autocorrelation to detect Fast-Flux domains based on the geographic distribution of the botnet C2 servers to which the detected domains resolve. It is shown that botnet C2 servers can be detected solely based on their geographic location. This technique is shown to clearly distinguish between malicious and legitimate domains. The implemented classifiers are lightweight and use existing network traffic to detect botnets and thus do not require major architectural changes to the network. The performance impact of implementing classification of DNS traffic is examined and it is shown that the performance impact is at an acceptable level.
- Full Text:
- Date Issued: 2014
- «
- ‹
- 1
- ›
- »