Towards a better understanding of small-scale fishing decisions and their consequences in Northern Mozambique
- Authors: Heckendorn, Katrina Ann
- Date: 2023-10-13
- Subjects: Fishery management Mozambique , Small-scale fisheries Mozambique , Collective action , Functional diversity , Fishes Effect of human beings on Mozambique , Socioecology
- Language: English
- Type: Academic theses , Doctoral theses , text
- Identifier: http://hdl.handle.net/10962/431797 , vital:72805 , DOI 10.21504/10962/431797
- Description: This study investigates the relationship between the interacting social and ecological systems within the Pemba Bay fishery, in Northern Mozambique, as mediated by fishing decisions. All ecosystems in the world are affected by human behaviours in some way. In many cases, human effects on ecosystems are detrimental to many other species and can cause shifts in the entire system. In fisheries, the connections between human behaviours and ecosystems are obvious, as fishers extract wild populations of marine species. Human behavioural plasticity and sometimes rapid cultural evolution allow human behaviours to change and adapt faster than many other species can respond which often allows fishers to overexploit marine ecosystems. Many fisheries in the world are fully, or over exploited. Managing these fisheries often focuses on changing those highly adaptable human behaviours. Fishers’ motivations for making different fishing decisions as well as attitudes towards the fishery can be used to understand human interactions with ecosystems when the dependence between the two is direct, as well as allowing managers to tailor interventions that account for fishers’ motivations and attitudes. Most fisheries’ management projects assume that behaviours are motivated by profit maximization. This study investigates this assumption by comparing the compatibility of interview responses and fishing behaviours with rational actor theory, which assumes profit maximization is the only goal. Responses are also compared with prospect theory, which emphasizes reliability of outcomes; descriptive norms, which focuses on social interactions; habitual behaviour, which assumes most decision are automatic based on habit; and theory of planned behaviour, which allows attitudes to be shaped by economic or non-economic motivations, as well as peer opinion and incorporates perceived behavioural control in making decisions. These behavioural theories span a variety of potential fisher motivations which could affect fishing decisions. The study then investigates the state of the social and ecological systems which have resulted, at least in part, from those fishing decisions, and makes recommendations on possible interventions to improve the system based on better understanding of fishers’ attitudes and motivations. The study tests the hypothesis that fishers are motivated primarily by profit maximization and, therefore, rational actor theory is most compatible with fishers’ stated motivations for fishing, or alternatively, that one of the other behavioural theories better explains fisher responses. This section used categorized interview responses based on their agreement, or not, with assumed responses if a particular behavioural theory were compatible. The results indicate that four of the five theories are most compatible with responses for at least one fisher, but that the theory of planned behaviour is the most consistent with the data overall, not rational actor theory. Specifically, fishers seem concerned with behavioural control as well as some non-catch related characteristics of the fishery, such as collective action and sustainability. The second hypothesis is that prospect theory is more compatible with current fishing behaviours than rational actor theory. Prospect theory states that people prefer more reliable outcomes, even if slightly less profitable, than outcomes which are more profitable on average, but also more variable. This section used catch data, and changes in relative use of different fishing methods to address this hypothesis. This hypothesis is confirmed for some aspects of fishery data, but not all. Fishers prefer methods which are more reliable and these methods are increasing in relative use. However, neither catch value nor reliability increases fishers’ opinions of their fishing method, but fisher characteristics which increase options do. This again indicates that behavioural control is important in determining fishers’ attitudes towards fishing. The third question addresses the social system within the fishery. It investigates whether fishing in Pemba Bay is a chosen profession or a livelihood of desperation from the poorest individuals. The study hypothesizes that fishers are as well-off as their non-fishing neighbours, and fishers who use more reliable or profitable methods are better off than those using less reliable/profitable methods and, as such, are more committed to fishing as a way of life. This section used fisher interview responses and household surveys to compare subjective and material wellbeing of fishers and non-fishers around Pemba Bay. The first part of the hypothesis is partly supported. Fishers using most methods have material standards of living comparable to non-fishers. However, they report lower subjective well-beings. Most measures of wellbeing are not affected by the reliability or profitability of the fishing method used, which does not support the second part of the hypothesis. Additionally, fishers using more profitable or reliable methods do not indicate more commitment to fishing as a way of life. The fourth and final section investigates the marine ecosystem. Based on conversations with fishers and local researchers, it is assumed that the Pemba fishery is overexploited. As such, the study hypothesizes that marine biomass, individual size of marine species, and functional diversity are lower in Pemba Bay than in other sites around Northern Mozambique, Vamizi Island, Situ Island, and Nuarro, due to high fishing pressure, and that direct removal of species by fishing has a dominant effect. This final section used baited remote underwater videos (BRUVs) to compare species composition and indices of abundance from the different locations. Again, there is support for part of this hypothesis. Marine species biomass and sizes are lower in Pemba Bay than other sites in Northern Mozambique; however, functional diversity is not different. In these data, changes in biomass and size are not correlated with amount of catch, so direct removal by fishing may not be the dominant source of change in the Pemba fishery. Together, these data indicate that the Pemba fishery may be unsustainable based on social and ecological indications. The importance of behavioural control in understanding fishing decisions indicates that any interventions to mitigate problems in the fishery will need to work with fishers to increase empowerment and allow experimentation to find locally relevant solutions to problems. , Thesis (PhD) -- Faculty of Science, Ichthyology and Fisheries Science, 2023
- Full Text:
- Authors: Heckendorn, Katrina Ann
- Date: 2023-10-13
- Subjects: Fishery management Mozambique , Small-scale fisheries Mozambique , Collective action , Functional diversity , Fishes Effect of human beings on Mozambique , Socioecology
- Language: English
- Type: Academic theses , Doctoral theses , text
- Identifier: http://hdl.handle.net/10962/431797 , vital:72805 , DOI 10.21504/10962/431797
- Description: This study investigates the relationship between the interacting social and ecological systems within the Pemba Bay fishery, in Northern Mozambique, as mediated by fishing decisions. All ecosystems in the world are affected by human behaviours in some way. In many cases, human effects on ecosystems are detrimental to many other species and can cause shifts in the entire system. In fisheries, the connections between human behaviours and ecosystems are obvious, as fishers extract wild populations of marine species. Human behavioural plasticity and sometimes rapid cultural evolution allow human behaviours to change and adapt faster than many other species can respond which often allows fishers to overexploit marine ecosystems. Many fisheries in the world are fully, or over exploited. Managing these fisheries often focuses on changing those highly adaptable human behaviours. Fishers’ motivations for making different fishing decisions as well as attitudes towards the fishery can be used to understand human interactions with ecosystems when the dependence between the two is direct, as well as allowing managers to tailor interventions that account for fishers’ motivations and attitudes. Most fisheries’ management projects assume that behaviours are motivated by profit maximization. This study investigates this assumption by comparing the compatibility of interview responses and fishing behaviours with rational actor theory, which assumes profit maximization is the only goal. Responses are also compared with prospect theory, which emphasizes reliability of outcomes; descriptive norms, which focuses on social interactions; habitual behaviour, which assumes most decision are automatic based on habit; and theory of planned behaviour, which allows attitudes to be shaped by economic or non-economic motivations, as well as peer opinion and incorporates perceived behavioural control in making decisions. These behavioural theories span a variety of potential fisher motivations which could affect fishing decisions. The study then investigates the state of the social and ecological systems which have resulted, at least in part, from those fishing decisions, and makes recommendations on possible interventions to improve the system based on better understanding of fishers’ attitudes and motivations. The study tests the hypothesis that fishers are motivated primarily by profit maximization and, therefore, rational actor theory is most compatible with fishers’ stated motivations for fishing, or alternatively, that one of the other behavioural theories better explains fisher responses. This section used categorized interview responses based on their agreement, or not, with assumed responses if a particular behavioural theory were compatible. The results indicate that four of the five theories are most compatible with responses for at least one fisher, but that the theory of planned behaviour is the most consistent with the data overall, not rational actor theory. Specifically, fishers seem concerned with behavioural control as well as some non-catch related characteristics of the fishery, such as collective action and sustainability. The second hypothesis is that prospect theory is more compatible with current fishing behaviours than rational actor theory. Prospect theory states that people prefer more reliable outcomes, even if slightly less profitable, than outcomes which are more profitable on average, but also more variable. This section used catch data, and changes in relative use of different fishing methods to address this hypothesis. This hypothesis is confirmed for some aspects of fishery data, but not all. Fishers prefer methods which are more reliable and these methods are increasing in relative use. However, neither catch value nor reliability increases fishers’ opinions of their fishing method, but fisher characteristics which increase options do. This again indicates that behavioural control is important in determining fishers’ attitudes towards fishing. The third question addresses the social system within the fishery. It investigates whether fishing in Pemba Bay is a chosen profession or a livelihood of desperation from the poorest individuals. The study hypothesizes that fishers are as well-off as their non-fishing neighbours, and fishers who use more reliable or profitable methods are better off than those using less reliable/profitable methods and, as such, are more committed to fishing as a way of life. This section used fisher interview responses and household surveys to compare subjective and material wellbeing of fishers and non-fishers around Pemba Bay. The first part of the hypothesis is partly supported. Fishers using most methods have material standards of living comparable to non-fishers. However, they report lower subjective well-beings. Most measures of wellbeing are not affected by the reliability or profitability of the fishing method used, which does not support the second part of the hypothesis. Additionally, fishers using more profitable or reliable methods do not indicate more commitment to fishing as a way of life. The fourth and final section investigates the marine ecosystem. Based on conversations with fishers and local researchers, it is assumed that the Pemba fishery is overexploited. As such, the study hypothesizes that marine biomass, individual size of marine species, and functional diversity are lower in Pemba Bay than in other sites around Northern Mozambique, Vamizi Island, Situ Island, and Nuarro, due to high fishing pressure, and that direct removal of species by fishing has a dominant effect. This final section used baited remote underwater videos (BRUVs) to compare species composition and indices of abundance from the different locations. Again, there is support for part of this hypothesis. Marine species biomass and sizes are lower in Pemba Bay than other sites in Northern Mozambique; however, functional diversity is not different. In these data, changes in biomass and size are not correlated with amount of catch, so direct removal by fishing may not be the dominant source of change in the Pemba fishery. Together, these data indicate that the Pemba fishery may be unsustainable based on social and ecological indications. The importance of behavioural control in understanding fishing decisions indicates that any interventions to mitigate problems in the fishery will need to work with fishers to increase empowerment and allow experimentation to find locally relevant solutions to problems. , Thesis (PhD) -- Faculty of Science, Ichthyology and Fisheries Science, 2023
- Full Text:
Cape Fold Ecoregion fish community ecology and responses to stressors
- Authors: Broom, Casey Jay
- Date: 2022-10-14
- Subjects: Cyprinidae South Africa Western Cape , Freshwater fishes South Africa Western Cape , Cyprinidae Habitat South Africa Western Cape , Food chains (Ecology) , Restoration ecology South Africa Western Cape , Riparian restoration South Africa Western Cape
- Language: English
- Type: Academic theses , Doctoral theses , text
- Identifier: http://hdl.handle.net/10962/365644 , vital:65772 , DOI https://doi.org/10.21504/10962/365644
- Description: Freshwater fishes are in global decline and fish as a group are the most imperilled of all vertebrates. Freshwater systems are among the most threatened globally, largely owing to their comparatively high species and habitat diversity while occupying a minute fraction of the Earth’s surface. In South Africa, invasion by non-native fishes has had a devastating effect on freshwater systems across the country. Numerous other stressors and anthropogenic impacts continue to impact these systems, including habitat degradation, water abstraction and global change effects. In general, South African freshwater systems are under-studied and there is a lack of baseline biological and ecological studies on many freshwater fish species. The Cape Fold Ecoregion (CFE) of South Africa is a particularly vulnerable region, with many range-restricted species and highly fragmented native fish ranges following high invasion rates. Within the CFE, the Olifants-Doring River System (ODRS) is of primary concern owing to the high endemism and imperilled status of its freshwater fish species. The Rondegat River in the ODRS is of notable conservation value, as it hosts populations of important endemic CFE species. This river is unique, being the site of the first alien fish eradication programme of its kind in South Africa. Thus the Rondegat River, and in particular its imperilled cyprinid assemblage, is used here as a case study of the responses and community dynamics of recovering freshwater fish species. The members of this cyprinid assemblage are Sedercypris calidus, Pseudobarbus phlegethon and Labeobarbus seeberi. Sedercypris calidus and L. seeberi are listed by the International Union for the Conservation of Nature (IUCN) as “Near-Threatened”, while P. phlegethon is listed as “Endangered”. Understanding the dynamics and responses to understudied vulnerable fish communities in the wake of restoration efforts was the overarching goal of this thesis. The first chapter served as a review of current knowledge of the CFE, the Rondegat River, the myriad stressors that have impacted on or are projected to affect this region, and the freshwater fish species on which those stressors act. My first investigations served as an extension of the existing Rondegat River monitoring programme, making use of remote underwater video (RUV) data to assess relative abundance and habitat associations of the focal species (Chapter 2). A relatively limited spatial range of P. phlegethon was established, which was suggested to be a result of relatively highly specialised habitat requirements and sensitivity to disturbance. Sedercypris calidus was confirmed as a relatively more abundant and ubiquitous species across the length of the Rondegat River, sharing much of the lower and middle reaches with L. seeberi. I sought to use experimental trials of functional response, as a proxy for feeding performance, across representative temperatures and relevant prey types, in the spatially overlapping S. calidus and L. seeberi (Chapter 3). Labeobarbus seeberi generally outcompeted S. calidus across temperature treatments and prey types. The ecomorphology and diet of all three species were used to construct trophic profiles, which suggested that there was a high degree of feeding capacity overlap between L. seeberi and S. calidus, while P. phlegethon diverged from the other two species (Chapter 4). Gut content suggested that all three species overlapped broadly in diet. This indicated that the realised trophic niche of these species is similar, despite some morphological specialisation. I then used RUV data to investigate in-situ feeding behaviours, with the aim to disentangle the nuances of community dynamics and mechanisms of coexistence in the cyprinid assemblage (Chapter 5). I found that, despite the higher feeding performance of L. seeberi (Chapter 3) and its overlaps in diet and feeding capacity with S. calidus (Chapter 4), S. calidus is able to mitigate competitive pressures through foraging mode switching and exploitation of allochthonous food inputs. Evidence for further habitat and prey selectivity in Pseudobarbus phlegethon was gathered based on dependence on complex habitats and pool refugia for the majority of its feeding, supporting this species as a headwater specialist; alongside signals of its spatial and habitat use patterns (Chapter 2). While S. calidus and L. seeberi were found to be less habitat-specific than P. phlegethon, caution was noted in the potential for ongoing stressors, such as habitat destruction, loss of river connectivity and global change effects, to impact on the reproductive success of these two species. Stressors affecting the habitats and sensitive invertebrate taxa upon which all three species depend continue to threaten the Rondegat system, highlighting the need to maintain ecosystem integrity through conservation interventions. There remains significant scope to maintain restoration efforts in the Rondegat River and other river systems of the CFE, through direct conservation actions, enhanced community awareness, indigenous riparian vegetation restoration and involvement of local stakeholders in various conservation-centred activities. , Thesis (PhD) -- Faculty of Science, Ichthyology and Fisheries Science, 2022
- Full Text:
- Authors: Broom, Casey Jay
- Date: 2022-10-14
- Subjects: Cyprinidae South Africa Western Cape , Freshwater fishes South Africa Western Cape , Cyprinidae Habitat South Africa Western Cape , Food chains (Ecology) , Restoration ecology South Africa Western Cape , Riparian restoration South Africa Western Cape
- Language: English
- Type: Academic theses , Doctoral theses , text
- Identifier: http://hdl.handle.net/10962/365644 , vital:65772 , DOI https://doi.org/10.21504/10962/365644
- Description: Freshwater fishes are in global decline and fish as a group are the most imperilled of all vertebrates. Freshwater systems are among the most threatened globally, largely owing to their comparatively high species and habitat diversity while occupying a minute fraction of the Earth’s surface. In South Africa, invasion by non-native fishes has had a devastating effect on freshwater systems across the country. Numerous other stressors and anthropogenic impacts continue to impact these systems, including habitat degradation, water abstraction and global change effects. In general, South African freshwater systems are under-studied and there is a lack of baseline biological and ecological studies on many freshwater fish species. The Cape Fold Ecoregion (CFE) of South Africa is a particularly vulnerable region, with many range-restricted species and highly fragmented native fish ranges following high invasion rates. Within the CFE, the Olifants-Doring River System (ODRS) is of primary concern owing to the high endemism and imperilled status of its freshwater fish species. The Rondegat River in the ODRS is of notable conservation value, as it hosts populations of important endemic CFE species. This river is unique, being the site of the first alien fish eradication programme of its kind in South Africa. Thus the Rondegat River, and in particular its imperilled cyprinid assemblage, is used here as a case study of the responses and community dynamics of recovering freshwater fish species. The members of this cyprinid assemblage are Sedercypris calidus, Pseudobarbus phlegethon and Labeobarbus seeberi. Sedercypris calidus and L. seeberi are listed by the International Union for the Conservation of Nature (IUCN) as “Near-Threatened”, while P. phlegethon is listed as “Endangered”. Understanding the dynamics and responses to understudied vulnerable fish communities in the wake of restoration efforts was the overarching goal of this thesis. The first chapter served as a review of current knowledge of the CFE, the Rondegat River, the myriad stressors that have impacted on or are projected to affect this region, and the freshwater fish species on which those stressors act. My first investigations served as an extension of the existing Rondegat River monitoring programme, making use of remote underwater video (RUV) data to assess relative abundance and habitat associations of the focal species (Chapter 2). A relatively limited spatial range of P. phlegethon was established, which was suggested to be a result of relatively highly specialised habitat requirements and sensitivity to disturbance. Sedercypris calidus was confirmed as a relatively more abundant and ubiquitous species across the length of the Rondegat River, sharing much of the lower and middle reaches with L. seeberi. I sought to use experimental trials of functional response, as a proxy for feeding performance, across representative temperatures and relevant prey types, in the spatially overlapping S. calidus and L. seeberi (Chapter 3). Labeobarbus seeberi generally outcompeted S. calidus across temperature treatments and prey types. The ecomorphology and diet of all three species were used to construct trophic profiles, which suggested that there was a high degree of feeding capacity overlap between L. seeberi and S. calidus, while P. phlegethon diverged from the other two species (Chapter 4). Gut content suggested that all three species overlapped broadly in diet. This indicated that the realised trophic niche of these species is similar, despite some morphological specialisation. I then used RUV data to investigate in-situ feeding behaviours, with the aim to disentangle the nuances of community dynamics and mechanisms of coexistence in the cyprinid assemblage (Chapter 5). I found that, despite the higher feeding performance of L. seeberi (Chapter 3) and its overlaps in diet and feeding capacity with S. calidus (Chapter 4), S. calidus is able to mitigate competitive pressures through foraging mode switching and exploitation of allochthonous food inputs. Evidence for further habitat and prey selectivity in Pseudobarbus phlegethon was gathered based on dependence on complex habitats and pool refugia for the majority of its feeding, supporting this species as a headwater specialist; alongside signals of its spatial and habitat use patterns (Chapter 2). While S. calidus and L. seeberi were found to be less habitat-specific than P. phlegethon, caution was noted in the potential for ongoing stressors, such as habitat destruction, loss of river connectivity and global change effects, to impact on the reproductive success of these two species. Stressors affecting the habitats and sensitive invertebrate taxa upon which all three species depend continue to threaten the Rondegat system, highlighting the need to maintain ecosystem integrity through conservation interventions. There remains significant scope to maintain restoration efforts in the Rondegat River and other river systems of the CFE, through direct conservation actions, enhanced community awareness, indigenous riparian vegetation restoration and involvement of local stakeholders in various conservation-centred activities. , Thesis (PhD) -- Faculty of Science, Ichthyology and Fisheries Science, 2022
- Full Text:
The effects of temperature and exploitation on the behaviour of red roman Chrysoblephus laticeps (Sparidae) at baited video stations
- Authors: Mataboge, Bontle Boitumelo
- Date: 2022-04-06
- Subjects: Marine resources conservation South Africa Agulhas , Sparidae Effect of temperature on South Africa Agulhas , Sparidae Climatic factors South Africa Agulhas , Sparidae Effect of fishing on South Africa Agulhas , Sparidae Effect of human beings on South Africa Agulhas , Sparidae Behavior South Africa Agulhas , Overfishing South Africa Agulhas , Underwater videography in wildlife monitoring South Africa Agulhas , Red roman (Chrysoblephus laticeps)
- Language: English
- Type: Academic theses , Master's theses , text
- Identifier: http://hdl.handle.net/10962/291140 , vital:56823
- Description: Marine environments are experiencing rapidly increasing temperatures, sea levels and acidification and higher frequencies and magnitudes of extreme weather events as a result of climate change. In the Agulhas Ecoregion of South Africa, there has been an increase in the frequency and intensity of upwelling events. Upwelling events result in rapid and large decreases in water temperature which can persist for several days. Variation in water temperature is known to impact the metabolic rate of fish (which are ectotherms) and in turn their activity patterns. To promote fitness related traits, the metabolic rate of fish is maximised at a specific temperature range. Outside of this optimal temperature range, the capacity of fish to perform aerobically declines. Therefore, it is expected that an increase in upwelling may place the fish under significant physiological stress. The effects of climate change can be compounded by the effects of fisheries-induced evolution; the microevolution of a fish population due to the artificial selection of certain biological traits by fishing practices. Passive fishing gears preferentially remove large (older) and bold individuals, causing reductions in population size, genetic diversity and fecundity as well as size and age truncation and the loss of large, bold and dominant phenotypes in fish populations. These demographic changes affect the adaptive capacity of fish and exploited populations are expected to be less resilient to climate variability and long-term temperature change. The resilience of fish is largely dependent on their physiological attributes, particularly their metabolic rate. Theoretically, fish with broader aerobic scope (defined as the difference between an individual’s maximum metabolic rate and standard metabolic rate) will be more tolerant to the impacts of climate change as they have energy available for adaptation. Recent respirometry and accelerometry studies suggest that populations of the endemic southern African linefish Chrysoblephus laticeps (red roman) from inside marine protected areas (MPAs) have higher metabolic rates and broader aerobic scope compared to those found outside of MPAs, particularly at thermal extremes. As C. laticeps are highly resident it is possible that fish populations protected within well-established MPAs may be more resilient to the physiological stresses caused by upwelling if they are able to maintain their activity levels despite changing temperatures. Behaviour is a proxy that can be used to infer metabolism as behaviours have associated metabolic costs and benefits. Behaviour is also a trait that can be altered by passive fishing practices which preferentially extract more active and bold individuals. Given this context, the aim of this thesis was to determine the effects of short-term thermal variability on the population structure and behaviour of C. laticeps and whether these effects differed between protected and exploited populations. Baited remote underwater stereo-video systems (stereo-BRUVs) were used to observe C. laticeps inside two MPAs (Tsitsikamma and Goukamma) and at two exploited sites (Port Elizabeth and Cape St. Francis) over the temperature range 10-18 °C. The relative abundance, size and relevant behaviours of C. laticeps were recorded. The relative abundance (MaxN) of C. laticeps was not significantly higher inside the MPAs compared to the exploited sites. The size of C. laticeps did not vary significantly by protection level either. However, the mean size of C. laticeps was considerably smaller at Port Elizabeth compared to the three other locations. There was a notable absence of large C. laticeps size classes at Port Elizabeth. The effect of water temperature on relative abundance was only seen in the exploited areas, where temperature and abundance were positively correlated. This was not the case in the protected areas where C. laticeps abundance remained roughly consistent. Generally, the effect of temperature on all measured behaviours was consistent across protection levels. An exception was that the feeding rate at Tsitsikamma MPA was significantly higher than at Cape St. Francis at temperatures below 11.5 °C. Temperature had a significant effect on the time taken for the first individual to appear in the field of view. This time shortened with increasing temperature, regardless of protection level. This was likely a result of the metabolic constraints placed on individuals by low waters temperatures and individuals would be able to pursue the bait more readily at higher temperatures. However, there was no evidence of greater metabolic scope from the C. laticeps individuals observed in the MPAs, relative to the exploited areas. Individual size and the presence of conspecifics were also found to significantly influence behaviour. Generally, size had a positive relationship with behaviour, with larger individuals more likely to feed on the bait, chase other fish from the bait (only in the MPAs) and spend more time in the field of view. The higher displays of aggression in MPAs may be an indication of fishing practices having removed bold and dominant individuals at the exploited sites. The probability of fleeing and the feeding rates of individuals increased with increasing numbers of conspecifics, suggesting that C. laticeps behaviour is influenced by intraspecific competition. Overall, this thesis did not find strong evidence that C. laticeps from MPAs performed better than C. laticeps from exploited areas, even at low temperatures. Behavioural responses to temperature were highly variable across locations and this may be attributed to high behavioural phenotypic diversity among individuals. Environmental stressors, such as temperature changes, can illicit very different behavioural responses among individuals in a population. It is also possible that C. laticeps from the exploited areas have the same genetic predispositions to physiological stress as the individuals in the MPAs due to spillover and larval recruitment from the MPAs. Indeed, genetic studies find that all C. laticeps population in South African represent a single well-mixed genetic stock. It is likely that greater sampling effort is required to resolve the patterns in behaviour between exploited and protected populations. Nonetheless, given the influence of size on behaviour, the smaller size of C. laticeps at Port Elizabeth may be cause for concern regarding the vulnerability of future populations to ongoing climate change. , Thesis (MSc) -- Faculty of Science, Ichthyology and Fisheries Science, 2022
- Full Text:
- Authors: Mataboge, Bontle Boitumelo
- Date: 2022-04-06
- Subjects: Marine resources conservation South Africa Agulhas , Sparidae Effect of temperature on South Africa Agulhas , Sparidae Climatic factors South Africa Agulhas , Sparidae Effect of fishing on South Africa Agulhas , Sparidae Effect of human beings on South Africa Agulhas , Sparidae Behavior South Africa Agulhas , Overfishing South Africa Agulhas , Underwater videography in wildlife monitoring South Africa Agulhas , Red roman (Chrysoblephus laticeps)
- Language: English
- Type: Academic theses , Master's theses , text
- Identifier: http://hdl.handle.net/10962/291140 , vital:56823
- Description: Marine environments are experiencing rapidly increasing temperatures, sea levels and acidification and higher frequencies and magnitudes of extreme weather events as a result of climate change. In the Agulhas Ecoregion of South Africa, there has been an increase in the frequency and intensity of upwelling events. Upwelling events result in rapid and large decreases in water temperature which can persist for several days. Variation in water temperature is known to impact the metabolic rate of fish (which are ectotherms) and in turn their activity patterns. To promote fitness related traits, the metabolic rate of fish is maximised at a specific temperature range. Outside of this optimal temperature range, the capacity of fish to perform aerobically declines. Therefore, it is expected that an increase in upwelling may place the fish under significant physiological stress. The effects of climate change can be compounded by the effects of fisheries-induced evolution; the microevolution of a fish population due to the artificial selection of certain biological traits by fishing practices. Passive fishing gears preferentially remove large (older) and bold individuals, causing reductions in population size, genetic diversity and fecundity as well as size and age truncation and the loss of large, bold and dominant phenotypes in fish populations. These demographic changes affect the adaptive capacity of fish and exploited populations are expected to be less resilient to climate variability and long-term temperature change. The resilience of fish is largely dependent on their physiological attributes, particularly their metabolic rate. Theoretically, fish with broader aerobic scope (defined as the difference between an individual’s maximum metabolic rate and standard metabolic rate) will be more tolerant to the impacts of climate change as they have energy available for adaptation. Recent respirometry and accelerometry studies suggest that populations of the endemic southern African linefish Chrysoblephus laticeps (red roman) from inside marine protected areas (MPAs) have higher metabolic rates and broader aerobic scope compared to those found outside of MPAs, particularly at thermal extremes. As C. laticeps are highly resident it is possible that fish populations protected within well-established MPAs may be more resilient to the physiological stresses caused by upwelling if they are able to maintain their activity levels despite changing temperatures. Behaviour is a proxy that can be used to infer metabolism as behaviours have associated metabolic costs and benefits. Behaviour is also a trait that can be altered by passive fishing practices which preferentially extract more active and bold individuals. Given this context, the aim of this thesis was to determine the effects of short-term thermal variability on the population structure and behaviour of C. laticeps and whether these effects differed between protected and exploited populations. Baited remote underwater stereo-video systems (stereo-BRUVs) were used to observe C. laticeps inside two MPAs (Tsitsikamma and Goukamma) and at two exploited sites (Port Elizabeth and Cape St. Francis) over the temperature range 10-18 °C. The relative abundance, size and relevant behaviours of C. laticeps were recorded. The relative abundance (MaxN) of C. laticeps was not significantly higher inside the MPAs compared to the exploited sites. The size of C. laticeps did not vary significantly by protection level either. However, the mean size of C. laticeps was considerably smaller at Port Elizabeth compared to the three other locations. There was a notable absence of large C. laticeps size classes at Port Elizabeth. The effect of water temperature on relative abundance was only seen in the exploited areas, where temperature and abundance were positively correlated. This was not the case in the protected areas where C. laticeps abundance remained roughly consistent. Generally, the effect of temperature on all measured behaviours was consistent across protection levels. An exception was that the feeding rate at Tsitsikamma MPA was significantly higher than at Cape St. Francis at temperatures below 11.5 °C. Temperature had a significant effect on the time taken for the first individual to appear in the field of view. This time shortened with increasing temperature, regardless of protection level. This was likely a result of the metabolic constraints placed on individuals by low waters temperatures and individuals would be able to pursue the bait more readily at higher temperatures. However, there was no evidence of greater metabolic scope from the C. laticeps individuals observed in the MPAs, relative to the exploited areas. Individual size and the presence of conspecifics were also found to significantly influence behaviour. Generally, size had a positive relationship with behaviour, with larger individuals more likely to feed on the bait, chase other fish from the bait (only in the MPAs) and spend more time in the field of view. The higher displays of aggression in MPAs may be an indication of fishing practices having removed bold and dominant individuals at the exploited sites. The probability of fleeing and the feeding rates of individuals increased with increasing numbers of conspecifics, suggesting that C. laticeps behaviour is influenced by intraspecific competition. Overall, this thesis did not find strong evidence that C. laticeps from MPAs performed better than C. laticeps from exploited areas, even at low temperatures. Behavioural responses to temperature were highly variable across locations and this may be attributed to high behavioural phenotypic diversity among individuals. Environmental stressors, such as temperature changes, can illicit very different behavioural responses among individuals in a population. It is also possible that C. laticeps from the exploited areas have the same genetic predispositions to physiological stress as the individuals in the MPAs due to spillover and larval recruitment from the MPAs. Indeed, genetic studies find that all C. laticeps population in South African represent a single well-mixed genetic stock. It is likely that greater sampling effort is required to resolve the patterns in behaviour between exploited and protected populations. Nonetheless, given the influence of size on behaviour, the smaller size of C. laticeps at Port Elizabeth may be cause for concern regarding the vulnerability of future populations to ongoing climate change. , Thesis (MSc) -- Faculty of Science, Ichthyology and Fisheries Science, 2022
- Full Text:
Role of the Amathole Marine Protected Area in protecting vulnerable and threatened reef fish
- Phillips, Moraea Megan Taberer
- Authors: Phillips, Moraea Megan Taberer
- Date: 2021-10-29
- Subjects: Reef fishes South Africa Amathole District Municipality , Reef fishes Conservation South Africa Amathole District Municipality , Reef ecology South Africa Amathole District Municipality , Rare fishes South Africa Amathole District Municipality , Fish populations South Africa Amathole District Municipality Monitoring , Fish declines South Africa Amathole District Municipality , Underwater videography in wildlife monitoring South Africa Amathole District Municipality , Amathole Marine Protected Area , Petrus rupestris (Red Steenbras) , Polysteganus undulosus (Seventyfour seabream) , Chrysoblephus cristiceps (Daggerhead seabream)
- Language: English
- Type: Master's theses , text
- Identifier: http://hdl.handle.net/10962/192152 , vital:45200
- Description: The Amathole Marine Protected Area (MPA) was first established on a voluntary basis in the 1980’s by local ski-boat fishermen and comprised three small no-take areas near East London. In 2011, the areas received official recognition as the Amathole MPA and in 2019 an offshore extension was granted, increasing the area covered from 250 km2 to over 4000 km2. Though the inshore Amathole MPA has benefitted from decades longer of reprieve from fishing activity than the offshore MPA, it is limited in both its coastal and depth extent, placing in doubt its capacity to provide meaningful protection to several heavily threatened target species. Among the numerous endemic Sparids for which the Amathole region constitutes a vital portion of their distributional range are red steenbras (Petrus rupestris), seventyfour (Polysteganus undulosus), and dageraad (Chrysoblephus cristiceps). The stocks of all three species have collapsed and urgent intervention has been recommended to enable their recovery, including protection in strategically placed MPAs. The offshore Amathole MPA covers an extensive portion of prime habitat for these and other species, but no formal research has been carried out on fish assemblages in the region. As such, data to substantiate the benefits of the inshore Amathole MPA and to provide a baseline reference for the offshore MPA are lacking. This study made use of baited remote underwater stereo-video systems (stereo-BRUVS) to survey fish assemblages in the inshore Amathole MPA, adjacent inshore exploited areas, and exploited areas seaward of the inshore MPA. Sampling was carried out in 2015 and 2016, prior to the establishment of the offshore Amathole MPA. Fish assemblages from the inshore MPA were compared with those from adjacent exploited areas within the same depth range and from the offshore zone between 76 and 112 m depth. Within the inshore zone, biomass and abundance of target species were greater inside the MPA than in adjacent exploited areas, with vulnerable fisheries species showing the strongest response to protection. Offshore assemblages consisted of fewer species and fewer fish overall than those from the inshore zone but were dominated by larger individuals and those from higher trophic levels. The size of C. cristiceps was consistent across the sampled depth range but abundance of this species declined rapidly at depths of more than 60 m. Within the inshore zone, both abundance and size of C. cristiceps were greater in the MPA than in adjacent exploited areas. The size of P. rupestris was consistent across the sampled depth range and between protected and exploited areas, but this species was considerably more abundant offshore. Where P. rupestris was detected inshore it was almost exclusively in the MPA. No difference in the size or abundance of P. undulosus was found between the inshore MPA and inshore Abstract exploited areas, but both measures were found to increase with depth, with reproductive-sized adults restricted to the offshore zone. Despite its limited benefits for larger species, the inshore Amathole MPA is a critical refuge for smaller and more resident species like C. cristiceps, demonstrating the possibilities for conservation and management of endangered species in small MPAs. Baseline abundance and size measures for P. rupestris and P. undulosus recorded here indicate that the offshore extension of the Amathole MPA is ideally situated to protect spawner stock of these species and potentially contribute to the recovery of their stocks across a wider distributional range. , Thesis (MSc) -- Faculty of Science, Zoology and Entomology, 2021
- Full Text:
- Authors: Phillips, Moraea Megan Taberer
- Date: 2021-10-29
- Subjects: Reef fishes South Africa Amathole District Municipality , Reef fishes Conservation South Africa Amathole District Municipality , Reef ecology South Africa Amathole District Municipality , Rare fishes South Africa Amathole District Municipality , Fish populations South Africa Amathole District Municipality Monitoring , Fish declines South Africa Amathole District Municipality , Underwater videography in wildlife monitoring South Africa Amathole District Municipality , Amathole Marine Protected Area , Petrus rupestris (Red Steenbras) , Polysteganus undulosus (Seventyfour seabream) , Chrysoblephus cristiceps (Daggerhead seabream)
- Language: English
- Type: Master's theses , text
- Identifier: http://hdl.handle.net/10962/192152 , vital:45200
- Description: The Amathole Marine Protected Area (MPA) was first established on a voluntary basis in the 1980’s by local ski-boat fishermen and comprised three small no-take areas near East London. In 2011, the areas received official recognition as the Amathole MPA and in 2019 an offshore extension was granted, increasing the area covered from 250 km2 to over 4000 km2. Though the inshore Amathole MPA has benefitted from decades longer of reprieve from fishing activity than the offshore MPA, it is limited in both its coastal and depth extent, placing in doubt its capacity to provide meaningful protection to several heavily threatened target species. Among the numerous endemic Sparids for which the Amathole region constitutes a vital portion of their distributional range are red steenbras (Petrus rupestris), seventyfour (Polysteganus undulosus), and dageraad (Chrysoblephus cristiceps). The stocks of all three species have collapsed and urgent intervention has been recommended to enable their recovery, including protection in strategically placed MPAs. The offshore Amathole MPA covers an extensive portion of prime habitat for these and other species, but no formal research has been carried out on fish assemblages in the region. As such, data to substantiate the benefits of the inshore Amathole MPA and to provide a baseline reference for the offshore MPA are lacking. This study made use of baited remote underwater stereo-video systems (stereo-BRUVS) to survey fish assemblages in the inshore Amathole MPA, adjacent inshore exploited areas, and exploited areas seaward of the inshore MPA. Sampling was carried out in 2015 and 2016, prior to the establishment of the offshore Amathole MPA. Fish assemblages from the inshore MPA were compared with those from adjacent exploited areas within the same depth range and from the offshore zone between 76 and 112 m depth. Within the inshore zone, biomass and abundance of target species were greater inside the MPA than in adjacent exploited areas, with vulnerable fisheries species showing the strongest response to protection. Offshore assemblages consisted of fewer species and fewer fish overall than those from the inshore zone but were dominated by larger individuals and those from higher trophic levels. The size of C. cristiceps was consistent across the sampled depth range but abundance of this species declined rapidly at depths of more than 60 m. Within the inshore zone, both abundance and size of C. cristiceps were greater in the MPA than in adjacent exploited areas. The size of P. rupestris was consistent across the sampled depth range and between protected and exploited areas, but this species was considerably more abundant offshore. Where P. rupestris was detected inshore it was almost exclusively in the MPA. No difference in the size or abundance of P. undulosus was found between the inshore MPA and inshore Abstract exploited areas, but both measures were found to increase with depth, with reproductive-sized adults restricted to the offshore zone. Despite its limited benefits for larger species, the inshore Amathole MPA is a critical refuge for smaller and more resident species like C. cristiceps, demonstrating the possibilities for conservation and management of endangered species in small MPAs. Baseline abundance and size measures for P. rupestris and P. undulosus recorded here indicate that the offshore extension of the Amathole MPA is ideally situated to protect spawner stock of these species and potentially contribute to the recovery of their stocks across a wider distributional range. , Thesis (MSc) -- Faculty of Science, Zoology and Entomology, 2021
- Full Text:
The effect of habitat and spatial management on reef fish in an established marine protected area
- Authors: Dames, Vivienne Abigail
- Date: 2021
- Subjects: iSimangaliso Wetland Park (South Africa) -- Management , Reef fishes -- South Africa -- KwaZulu-Natal , Baited remote underwater stereo-video systems (stereo-BRUVs) , Marine parks and reserves -- Monitoring -- South Africa -- KwaZulu-Natal , Fish populations -- Measurement
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/171150 , vital:42024
- Description: The persistence of harvested fish populations in the Anthropocene will be determined, above all, by how they respond to the interacting effects of climate change and fisheries exploitation. Predicting how populations will respond to both these threats is essential for any adaptive and sustainable management strategy. The response of fish populations to climate change is underpinned by physiological rates and tolerances, and emerging evidence suggests there may be physiological-based selection in capture fisheries. By quantifying important physiological rates of a model species, the endemic seabream, Chrysoblephus laticeps, across ecologically relevant thermal gradients and from populations subjected to varying intensities of commercial exploitation, this thesis aimed to 1) provide the first physiologically grounded climate resilience assessment for a South African linefish species, and 2) elucidate whether exploitation can drive populations to less physiologically resilient states in response to climate change. To identify physiologically limiting sea temperatures and to determine if exploitation alters physiological trait distributions, an intermittent flow respirometry experiment was used to test the metabolic response of spatially protected and exploited populations of C. laticeps to acute thermal variability. Exploited populations showed reduced metabolic phenotype diversity, fewer high-performance aerobic scope phenotypes, and a significantly lower aerobic scope curve across all test temperatures. Although both populations maintained a relatively high aerobic scope across a wide thermal range, their metabolic rates were compromised when extreme cold events were simulated (8 °C), suggesting that predicted future increases in upwelling frequency and intensity may be the primary limiting factor in a more thermally variable future ocean. The increment widths of annuli in the otoliths of C. laticeps from contemporary and historic collections were measured, as a proxy for the annual growth rate of exploited and protected populations. Hierarchical mixed models were used to partition growth variation within and among individuals and ascribe growth to intrinsic and extrinsic effects. The best model for the protected population indicated that the growth response of C. laticeps was poorer during years characterised by a high cumulative upwelling intensity, and better during years characterised by higher mean autumn sea surface temperatures. The exploited population growth chronology was too short to identify an extrinsic growth driver. The growth results again highlight the role of thermal variability in modulating the response of C. laticeps to its ambient environment and indicate that the predicted increases in upwelling frequency and intensity may constrain future growth rates of this species. A metabolic index (ϕ), representing the ratio of O2 supply to demand at various temperatures and oxygen concentrations, was estimated for exploited and protected populations of C. laticeps and used to predict future distribution responses. There was no difference in the laboratory calibrations of ϕ between populations, and all data was subsequently combined into a single piecewise (12 °C) calibrated ϕ model. To predict the distribution of C. laticeps, ϕ was projected across a high-resolution ocean model of the South African coastal zone, and a species distribution model implemented using the random forest algorithm and C. laticeps occurrence points. The future distribution of C. laticeps was estimated by predicting trained models across ocean model projections up to 2100. The best predictor of C. laticeps’ current distribution was minimum monthly ϕ and future predictions indicated only a slight range contraction on either edge of C. laticeps’ distribution by 2100. In order to provide policy makers, currently developing climate change management frameworks for South Africa’s ocean, with a usable output, the results of all research chapters were combined into a marine spatial model. The spatial model identified areas where C. laticeps is predicted to be resilient to climate change in terms of physiology, growth and distribution responses, which can then be prioritised for adaptation measures, such as spatial protection from exploitation. While these results are specific to C. laticeps, the methodology developed to identify areas of climate resilience has broad applications across taxa. From a global perspective, perhaps the most salient points to consider from this case study are the evidence of selective exploitation on physiological traits and the importance of environmental variability, rather than long-term mean climate changes, in affecting organism performance. These ideas are congruent with the current paradigm shift in how we think of the ocean, selective fisheries, and how they relate to organism climate resilience.
- Full Text:
- Authors: Dames, Vivienne Abigail
- Date: 2021
- Subjects: iSimangaliso Wetland Park (South Africa) -- Management , Reef fishes -- South Africa -- KwaZulu-Natal , Baited remote underwater stereo-video systems (stereo-BRUVs) , Marine parks and reserves -- Monitoring -- South Africa -- KwaZulu-Natal , Fish populations -- Measurement
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/171150 , vital:42024
- Description: The persistence of harvested fish populations in the Anthropocene will be determined, above all, by how they respond to the interacting effects of climate change and fisheries exploitation. Predicting how populations will respond to both these threats is essential for any adaptive and sustainable management strategy. The response of fish populations to climate change is underpinned by physiological rates and tolerances, and emerging evidence suggests there may be physiological-based selection in capture fisheries. By quantifying important physiological rates of a model species, the endemic seabream, Chrysoblephus laticeps, across ecologically relevant thermal gradients and from populations subjected to varying intensities of commercial exploitation, this thesis aimed to 1) provide the first physiologically grounded climate resilience assessment for a South African linefish species, and 2) elucidate whether exploitation can drive populations to less physiologically resilient states in response to climate change. To identify physiologically limiting sea temperatures and to determine if exploitation alters physiological trait distributions, an intermittent flow respirometry experiment was used to test the metabolic response of spatially protected and exploited populations of C. laticeps to acute thermal variability. Exploited populations showed reduced metabolic phenotype diversity, fewer high-performance aerobic scope phenotypes, and a significantly lower aerobic scope curve across all test temperatures. Although both populations maintained a relatively high aerobic scope across a wide thermal range, their metabolic rates were compromised when extreme cold events were simulated (8 °C), suggesting that predicted future increases in upwelling frequency and intensity may be the primary limiting factor in a more thermally variable future ocean. The increment widths of annuli in the otoliths of C. laticeps from contemporary and historic collections were measured, as a proxy for the annual growth rate of exploited and protected populations. Hierarchical mixed models were used to partition growth variation within and among individuals and ascribe growth to intrinsic and extrinsic effects. The best model for the protected population indicated that the growth response of C. laticeps was poorer during years characterised by a high cumulative upwelling intensity, and better during years characterised by higher mean autumn sea surface temperatures. The exploited population growth chronology was too short to identify an extrinsic growth driver. The growth results again highlight the role of thermal variability in modulating the response of C. laticeps to its ambient environment and indicate that the predicted increases in upwelling frequency and intensity may constrain future growth rates of this species. A metabolic index (ϕ), representing the ratio of O2 supply to demand at various temperatures and oxygen concentrations, was estimated for exploited and protected populations of C. laticeps and used to predict future distribution responses. There was no difference in the laboratory calibrations of ϕ between populations, and all data was subsequently combined into a single piecewise (12 °C) calibrated ϕ model. To predict the distribution of C. laticeps, ϕ was projected across a high-resolution ocean model of the South African coastal zone, and a species distribution model implemented using the random forest algorithm and C. laticeps occurrence points. The future distribution of C. laticeps was estimated by predicting trained models across ocean model projections up to 2100. The best predictor of C. laticeps’ current distribution was minimum monthly ϕ and future predictions indicated only a slight range contraction on either edge of C. laticeps’ distribution by 2100. In order to provide policy makers, currently developing climate change management frameworks for South Africa’s ocean, with a usable output, the results of all research chapters were combined into a marine spatial model. The spatial model identified areas where C. laticeps is predicted to be resilient to climate change in terms of physiology, growth and distribution responses, which can then be prioritised for adaptation measures, such as spatial protection from exploitation. While these results are specific to C. laticeps, the methodology developed to identify areas of climate resilience has broad applications across taxa. From a global perspective, perhaps the most salient points to consider from this case study are the evidence of selective exploitation on physiological traits and the importance of environmental variability, rather than long-term mean climate changes, in affecting organism performance. These ideas are congruent with the current paradigm shift in how we think of the ocean, selective fisheries, and how they relate to organism climate resilience.
- Full Text:
Do submarine canyons influence the structure and diversity of benthic fish assemblages on the continental shelf edge?
- Nyawo, Mpilonhle Aura June-Rose
- Authors: Nyawo, Mpilonhle Aura June-Rose
- Date: 2020
- Subjects: Submarine valleys , iSimangaliso Wetland Park (South Africa) , Biotic communities -- South Africa -- iSimangaliso Wetland Park , Groundfishes -- South Africa -- iSimangaliso Wetland Park , Marine ecology -- South Africa -- iSimangaliso Wetland Park
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/167264 , vital:41462
- Description: Marine ecosystems play an important role in human welfare, such as providing food security and providing social, economic and environmental benefits to an increasing human population. However, due to the deleterious impact of overfishing as well as habitat degradation, pollution and climate change, many marine ecosystems and the substantial biodiversity they support, are under increasing threats. Submarine canyon ecosystems cut into the continental margin in all our oceans and are considered regions of enhanced diversity, abundance and biomass for many marine communities, including fish. In South Africa, the tropical Delagoa Ecoregion is characterised by numerous submarine canyons that are home to coelacanths Latimeria chalumnae, and a variety of commercially important line fish species. However, there is currently a lack of information on the ecological structure and functioning of these canyons, in relation to nearby non-canyon ecosystems. The aim of this thesis was to generate knowledge on the role of submarine canyons in influencing the benthic fish assemblage structure and diversity on the continental shelf and shelf edge within the high-latitude coral reef ecosystems in the tropical Delagoa Ecoregion of South Africa. First, a systematic literature review was conducted to examine the current knowledge on the role of submarine canyons on the benthic fish assemblages occurring on continental margins, as well as outline the trends in canyon research. For the fieldwork component of this thesis, baited remote underwater stereo-video systems were utilised to gather data. The first research chapter, chapter 3, investigated the effect of ecosystem and depth on the diversity and structure of benthic fish assemblages within iSimangaliso Wetland Park in the Delagoa Ecoregion. Data were collected in 2017 from Wright Canyon (canyon ecosystem) and adjacent slope ecosystems around the canyon (non-canyon ecosystem) at depths ranging between 70–240 m. The second research chapter, chapter 4, data were collected in 2018, from 60–100 m depths in three ubmarine canyons (Wright, Diepgat,Levens) and their adjacent habitat within iSimangaliso Wetland Park to investigate the diversity patterns and community structure of benthic fish and cons ider location as a factor. The systematic review showed that canyon research is still very much in its infancy, however more papers are expected to be published in the future. There were clear location associated biases detected, with more than 90% of the canyon research being concentrated in the Mediterranean Sea, while only one study was published from South Africa. Most of the reviewed literature focused on invertebrates, with benthic fish (including cartilaginous fish) being the second most studied taxa. A wide range of methods from both fishery- dependent and fishery-independent categories were used to gather the data of benthic fish from the canyons and adjacent areas. With over 8500 submarine canyons mapped globally, the number of submarine canyon research published and the detected location bias is of great concern. More studies are needed in order to understand the role of submarine canyons on adjacent slope habitats Overall, the results from the research chapters indicated that there were higher a bundances in the canyon ecosystem compared to the non-canyon ecosystem. In contrast, evenness and beta-diversity were higher in the non-canyon ecosystem. Relief, bottom type as well as depth played a major role in explaining the observed abundance and diversity patterns. Both evenness and beta-diversity decreased with increase in depth. The canyon and non-canyon also differed in terms of habitat structure. The canyon ecosystem was characterised by patched reef and reef habitats with high relief whereas the non-canyon ecosystem was characterised by flats and habitats, especially at shallower depths. Additionally, there were clear differences in terms of the fish community structure between the canyon and the non-canyon ecosystem. The heterogeneous and complex habitats of the canyon ecosystem were typified by species such as Epinephelus poecilonotus, Polysteganus coeruleopunctatus and Chrysoblephus puniceus in comparison to the less complex habitats outside the canyons that were preferred by species such as Lagocephalus sceleratus, and Rhinobatos leucospilus. The different locations sampled demonstrated that the canyon effect was not onsistent at all locations, with varying results detected in the different sample locations. This research demonstrates that clea r differences exists between the benthic fish assemblages associated with canyon and non-canyon ecosystems and provides important information on the role of submarine canyons in the iSimangaliso Wetland Park. From this thesis, it is clear that a ‘canyon effect’ exists in the continental shelf and shelf edge. The results suggested that heterogeneity of habitats was the most important environmental factor that differed between the canyon and non-canyon ecosystems and these differences in the habitat were driving the observed patterns. This thesis has provided a reference point, with regards to investigating the role and influence of these canyons on benthic fish assemblages occurring on the continental shelf edge. The information provided by this thesis can ultimately be used in other studies investigating benthic fish assemblages in other submarine canyons within iSimangaliso Wetland Park and the rest of South Africa./
- Full Text:
- Authors: Nyawo, Mpilonhle Aura June-Rose
- Date: 2020
- Subjects: Submarine valleys , iSimangaliso Wetland Park (South Africa) , Biotic communities -- South Africa -- iSimangaliso Wetland Park , Groundfishes -- South Africa -- iSimangaliso Wetland Park , Marine ecology -- South Africa -- iSimangaliso Wetland Park
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/167264 , vital:41462
- Description: Marine ecosystems play an important role in human welfare, such as providing food security and providing social, economic and environmental benefits to an increasing human population. However, due to the deleterious impact of overfishing as well as habitat degradation, pollution and climate change, many marine ecosystems and the substantial biodiversity they support, are under increasing threats. Submarine canyon ecosystems cut into the continental margin in all our oceans and are considered regions of enhanced diversity, abundance and biomass for many marine communities, including fish. In South Africa, the tropical Delagoa Ecoregion is characterised by numerous submarine canyons that are home to coelacanths Latimeria chalumnae, and a variety of commercially important line fish species. However, there is currently a lack of information on the ecological structure and functioning of these canyons, in relation to nearby non-canyon ecosystems. The aim of this thesis was to generate knowledge on the role of submarine canyons in influencing the benthic fish assemblage structure and diversity on the continental shelf and shelf edge within the high-latitude coral reef ecosystems in the tropical Delagoa Ecoregion of South Africa. First, a systematic literature review was conducted to examine the current knowledge on the role of submarine canyons on the benthic fish assemblages occurring on continental margins, as well as outline the trends in canyon research. For the fieldwork component of this thesis, baited remote underwater stereo-video systems were utilised to gather data. The first research chapter, chapter 3, investigated the effect of ecosystem and depth on the diversity and structure of benthic fish assemblages within iSimangaliso Wetland Park in the Delagoa Ecoregion. Data were collected in 2017 from Wright Canyon (canyon ecosystem) and adjacent slope ecosystems around the canyon (non-canyon ecosystem) at depths ranging between 70–240 m. The second research chapter, chapter 4, data were collected in 2018, from 60–100 m depths in three ubmarine canyons (Wright, Diepgat,Levens) and their adjacent habitat within iSimangaliso Wetland Park to investigate the diversity patterns and community structure of benthic fish and cons ider location as a factor. The systematic review showed that canyon research is still very much in its infancy, however more papers are expected to be published in the future. There were clear location associated biases detected, with more than 90% of the canyon research being concentrated in the Mediterranean Sea, while only one study was published from South Africa. Most of the reviewed literature focused on invertebrates, with benthic fish (including cartilaginous fish) being the second most studied taxa. A wide range of methods from both fishery- dependent and fishery-independent categories were used to gather the data of benthic fish from the canyons and adjacent areas. With over 8500 submarine canyons mapped globally, the number of submarine canyon research published and the detected location bias is of great concern. More studies are needed in order to understand the role of submarine canyons on adjacent slope habitats Overall, the results from the research chapters indicated that there were higher a bundances in the canyon ecosystem compared to the non-canyon ecosystem. In contrast, evenness and beta-diversity were higher in the non-canyon ecosystem. Relief, bottom type as well as depth played a major role in explaining the observed abundance and diversity patterns. Both evenness and beta-diversity decreased with increase in depth. The canyon and non-canyon also differed in terms of habitat structure. The canyon ecosystem was characterised by patched reef and reef habitats with high relief whereas the non-canyon ecosystem was characterised by flats and habitats, especially at shallower depths. Additionally, there were clear differences in terms of the fish community structure between the canyon and the non-canyon ecosystem. The heterogeneous and complex habitats of the canyon ecosystem were typified by species such as Epinephelus poecilonotus, Polysteganus coeruleopunctatus and Chrysoblephus puniceus in comparison to the less complex habitats outside the canyons that were preferred by species such as Lagocephalus sceleratus, and Rhinobatos leucospilus. The different locations sampled demonstrated that the canyon effect was not onsistent at all locations, with varying results detected in the different sample locations. This research demonstrates that clea r differences exists between the benthic fish assemblages associated with canyon and non-canyon ecosystems and provides important information on the role of submarine canyons in the iSimangaliso Wetland Park. From this thesis, it is clear that a ‘canyon effect’ exists in the continental shelf and shelf edge. The results suggested that heterogeneity of habitats was the most important environmental factor that differed between the canyon and non-canyon ecosystems and these differences in the habitat were driving the observed patterns. This thesis has provided a reference point, with regards to investigating the role and influence of these canyons on benthic fish assemblages occurring on the continental shelf edge. The information provided by this thesis can ultimately be used in other studies investigating benthic fish assemblages in other submarine canyons within iSimangaliso Wetland Park and the rest of South Africa./
- Full Text:
The effect of bait on fine-scale habitat associations of reef fish investigated with remote underwater video systems
- Authors: Schmidt, Nicholas C
- Date: 2019
- Subjects: Baited remote underwater stereo-video systems (stereo-BRUVs) , Remote underwater stereo-video systems , Underwater videography in wildlife monitoring -- South Africa -- Tsitsikamma , Fish stock assessment -- South Africa -- Tsitsikamma , Fish populations -- Monitoring -- South Africa -- Tsitsikamma , Fishes -- Habitat -- South Africa -- Tsitsikamma
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/68380 , vital:29249
- Description: Establishing the associations between fish and their habitats can aid in the monitoring of fish stocks and the design of effective marine protected areas (MPAs). Baited remote underwater stereo-video systems (stereo-BRUVs) are now commonly used to asses fish populations. The habitats seen in the video footage of stereo-BRUVs can be used to link fish fauna to preferred habitat types. However, the application of bait potentially attracts fish from surrounding habitats, and might result in a biased understanding of fish–habitat associations. A field study was conducted in the Tsitsikamma National Park MPA to determine the effect of bait on fine-scale fish–habitat associations, using remote photographic and video methods. The study was conducted over the summer season of 2015 and 2016. Data were collected within a 1x1 km shallow (9–44 m) reef complex. Within the sampling area, 944 photo-quadrats of the macrobenthos were taken 30 m apart by means of a drop camera. By separating the macrobenthos into broad taxonomic groups, five habitat types were identified, namely Shallow Sand, Shallow Reef, Deep Reef, Deep Sand and Patch Reef. The results show that even on a fine scale, depth is an important predictor of macrobenthic distribution and assemblage structure. Baited (stereo-BRUVs) and unbaited (stereo-RUVs) surveys were then conducted to sample the fish community in the same area during the period under study. Higher abundances of fish were observed in reef than in sandy habitats, and bait was seen to have a positive effect on species richness and fish abundance. When comparing habitats, fish abundance and composition on reef habitats were significantly different from sand habitats. This was observed in both the stereo-RUVs and stereo-BRUVs methods. High counts of roman (Chrysoblephus laticeps), fransmadam (Boopsoidea inornata) and steentjie (Spondyliosoma emarginatum) in reef habitats were contrasted by high counts of white sea catfish (Galeichthys feliceps), evil-eye puffer (Amblyrhynchotes honckenii) and lesser guitarfish (Rhinecanthus annulatus) in sandy habitats. Overall, the underlying patterns in fish diversity recorded with the two video methods were generally comparable. However, stereo-RUVs appeared to be unable to detect species that were present in sand habitats, while stereo-BRUVs increased the number and abundance of species recorded in all habitat types. In the stereo-RUVs footage, differences between reef habitats were dampened by the presence of highly abundant fish species. In the stereo-BRUVs footage, although bait appeared to have an effect on the observed fish assemblage, this manifested in an increase in species richness, higher fish abundances and a better overall ability to detect fish–habitat relationships. As such, stereo-BRUVs are considered a robust, effective and recommended method for detecting fish–habitat relationships, even over a fine scale.
- Full Text:
- Authors: Schmidt, Nicholas C
- Date: 2019
- Subjects: Baited remote underwater stereo-video systems (stereo-BRUVs) , Remote underwater stereo-video systems , Underwater videography in wildlife monitoring -- South Africa -- Tsitsikamma , Fish stock assessment -- South Africa -- Tsitsikamma , Fish populations -- Monitoring -- South Africa -- Tsitsikamma , Fishes -- Habitat -- South Africa -- Tsitsikamma
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/68380 , vital:29249
- Description: Establishing the associations between fish and their habitats can aid in the monitoring of fish stocks and the design of effective marine protected areas (MPAs). Baited remote underwater stereo-video systems (stereo-BRUVs) are now commonly used to asses fish populations. The habitats seen in the video footage of stereo-BRUVs can be used to link fish fauna to preferred habitat types. However, the application of bait potentially attracts fish from surrounding habitats, and might result in a biased understanding of fish–habitat associations. A field study was conducted in the Tsitsikamma National Park MPA to determine the effect of bait on fine-scale fish–habitat associations, using remote photographic and video methods. The study was conducted over the summer season of 2015 and 2016. Data were collected within a 1x1 km shallow (9–44 m) reef complex. Within the sampling area, 944 photo-quadrats of the macrobenthos were taken 30 m apart by means of a drop camera. By separating the macrobenthos into broad taxonomic groups, five habitat types were identified, namely Shallow Sand, Shallow Reef, Deep Reef, Deep Sand and Patch Reef. The results show that even on a fine scale, depth is an important predictor of macrobenthic distribution and assemblage structure. Baited (stereo-BRUVs) and unbaited (stereo-RUVs) surveys were then conducted to sample the fish community in the same area during the period under study. Higher abundances of fish were observed in reef than in sandy habitats, and bait was seen to have a positive effect on species richness and fish abundance. When comparing habitats, fish abundance and composition on reef habitats were significantly different from sand habitats. This was observed in both the stereo-RUVs and stereo-BRUVs methods. High counts of roman (Chrysoblephus laticeps), fransmadam (Boopsoidea inornata) and steentjie (Spondyliosoma emarginatum) in reef habitats were contrasted by high counts of white sea catfish (Galeichthys feliceps), evil-eye puffer (Amblyrhynchotes honckenii) and lesser guitarfish (Rhinecanthus annulatus) in sandy habitats. Overall, the underlying patterns in fish diversity recorded with the two video methods were generally comparable. However, stereo-RUVs appeared to be unable to detect species that were present in sand habitats, while stereo-BRUVs increased the number and abundance of species recorded in all habitat types. In the stereo-RUVs footage, differences between reef habitats were dampened by the presence of highly abundant fish species. In the stereo-BRUVs footage, although bait appeared to have an effect on the observed fish assemblage, this manifested in an increase in species richness, higher fish abundances and a better overall ability to detect fish–habitat relationships. As such, stereo-BRUVs are considered a robust, effective and recommended method for detecting fish–habitat relationships, even over a fine scale.
- Full Text:
The role of ecological processes in structuring reef fish communities in the Agulhas Ecoregion, South Africa
- Authors: Dyer, Alexander
- Date: 2018
- Subjects: Reef fishes -- South Africa -- Agulhas, Cape (Cape) , Reef fishes -- Ecology -- South Africa -- Agulhas, Cape (Cape) , Marine biodiversity -- South Africa -- Agulhas, Cape (Cape) , Biotic communities -- South Africa -- Agulhas, Cape (Cape) , Sparidae -- South Africa -- Agulhas, Cape (Cape) , Reef fishes -- Size -- South Africa -- Agulhas, Cape (Cape) , Baited remote underwater stereo-video systems (stereo-BRUVs)
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/63899 , vital:28504
- Description: Local, niche-based processes, which arise from the interplay between biotic interactions and abiotic constraints are considered to be important regulators of community structure. However, it is increasingly recognised that patterns of diversity can also be strongly influenced by dispersal-driven processes. While empirical research on the diversity of coral reef fishes on shallow tropical reefs has contributed greatly to the development of general concepts in ecology, there have been considerably fewer studies on the processes which shape the diversity of fish communities on shallow (10 - 30 m) and deep (30 - 75 m) rocky reefs. Consequently, it is less clear at which spatial scales niche partitioning and dispersal limitation contribute most strongly to the structure of reef-associated fish communities within rocky reef ecosystems. To address this caveat, research was conducted at four rocky reef complexes within the warm-temperate Agulhas Ecoregion, South Africa. The diversity of reef-associated fishes was sampled by baited remote underwater stereo-video systems (stereo-BRUVs) to incorporate the range of heterogeneous reef habitat in Tsitsikamma National Park Marine Protected Area (TNP MPA) and Algoa Bay (AB). To examine how niche-based and dispersal-driven processes influence patterns of diversity among species within the dominant family of resident fishes, the sparids (Sparidae), components of diversity were quantified at several spatial scales. Turnover in the number of species which locally co-occurred was found to be largely driven by the limited dispersal of species over hundreds of kilometres. When relative species abundances were taken into account, sparid communities were characterised by higher than expected rates of compositional turnover among local habitat patches separated by hundreds to thousands of metres of contiguous reef. Patterns of compositional turnover were associated with the spatial aggregation of conspecifics, particularly at scales which facilitate the post-settlement dispersal of fishes. Niche-based segregation of species along the depth gradient was found to be the primary driver of compositional turnover among both protected and exploited communities. However, spatial structuring within reefs, which was independent of variation in the environment, suggests that compositional differences among communities are also influenced by the limited post-settlement dispersal of resident fishes to adjacent areas during their ontogeny. Together, the results suggest that the diversity of reef-associated sparids is likely to depend both on an adequate diversity of suitable reef habitat and a sufficient degree of spatial connectivity to facilitate ontogenetic habitat shifts. Taxon-based descriptors of diversity do not adequately account for ecological difference among conspecifics within size-structured populations. To test whether differences in body size facilitated coexistence among sparid fishes, the number of species which coexisted at the local scale was related to variation in the size structure of communities. In communities which have been historically protected from fishing, local coexistence between a greater number of species was promoted by reduced levels of intraspecific variation in size of fishes. This suggests that, among species with similar trophic requirements, further niche segregation along a prey-size and body-size gradient is likely to mitigate the direct impacts of competition for shared food resources. Among exploited communities, size structure did not influence the number of species which coexisted at the local scale. This finding suggests that fishing-induced mortality of larger-bodied fishes is likely to remove some of the constraints to colonisation which arise from asymmetries in competitive fitness between small and large-bodied fishes. Together, these results highlight the importance of post-settlement processes and population size structure to the maintenance of reef-associated fish diversity within contiguous rocky reef habitats.
- Full Text:
- Authors: Dyer, Alexander
- Date: 2018
- Subjects: Reef fishes -- South Africa -- Agulhas, Cape (Cape) , Reef fishes -- Ecology -- South Africa -- Agulhas, Cape (Cape) , Marine biodiversity -- South Africa -- Agulhas, Cape (Cape) , Biotic communities -- South Africa -- Agulhas, Cape (Cape) , Sparidae -- South Africa -- Agulhas, Cape (Cape) , Reef fishes -- Size -- South Africa -- Agulhas, Cape (Cape) , Baited remote underwater stereo-video systems (stereo-BRUVs)
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/63899 , vital:28504
- Description: Local, niche-based processes, which arise from the interplay between biotic interactions and abiotic constraints are considered to be important regulators of community structure. However, it is increasingly recognised that patterns of diversity can also be strongly influenced by dispersal-driven processes. While empirical research on the diversity of coral reef fishes on shallow tropical reefs has contributed greatly to the development of general concepts in ecology, there have been considerably fewer studies on the processes which shape the diversity of fish communities on shallow (10 - 30 m) and deep (30 - 75 m) rocky reefs. Consequently, it is less clear at which spatial scales niche partitioning and dispersal limitation contribute most strongly to the structure of reef-associated fish communities within rocky reef ecosystems. To address this caveat, research was conducted at four rocky reef complexes within the warm-temperate Agulhas Ecoregion, South Africa. The diversity of reef-associated fishes was sampled by baited remote underwater stereo-video systems (stereo-BRUVs) to incorporate the range of heterogeneous reef habitat in Tsitsikamma National Park Marine Protected Area (TNP MPA) and Algoa Bay (AB). To examine how niche-based and dispersal-driven processes influence patterns of diversity among species within the dominant family of resident fishes, the sparids (Sparidae), components of diversity were quantified at several spatial scales. Turnover in the number of species which locally co-occurred was found to be largely driven by the limited dispersal of species over hundreds of kilometres. When relative species abundances were taken into account, sparid communities were characterised by higher than expected rates of compositional turnover among local habitat patches separated by hundreds to thousands of metres of contiguous reef. Patterns of compositional turnover were associated with the spatial aggregation of conspecifics, particularly at scales which facilitate the post-settlement dispersal of fishes. Niche-based segregation of species along the depth gradient was found to be the primary driver of compositional turnover among both protected and exploited communities. However, spatial structuring within reefs, which was independent of variation in the environment, suggests that compositional differences among communities are also influenced by the limited post-settlement dispersal of resident fishes to adjacent areas during their ontogeny. Together, the results suggest that the diversity of reef-associated sparids is likely to depend both on an adequate diversity of suitable reef habitat and a sufficient degree of spatial connectivity to facilitate ontogenetic habitat shifts. Taxon-based descriptors of diversity do not adequately account for ecological difference among conspecifics within size-structured populations. To test whether differences in body size facilitated coexistence among sparid fishes, the number of species which coexisted at the local scale was related to variation in the size structure of communities. In communities which have been historically protected from fishing, local coexistence between a greater number of species was promoted by reduced levels of intraspecific variation in size of fishes. This suggests that, among species with similar trophic requirements, further niche segregation along a prey-size and body-size gradient is likely to mitigate the direct impacts of competition for shared food resources. Among exploited communities, size structure did not influence the number of species which coexisted at the local scale. This finding suggests that fishing-induced mortality of larger-bodied fishes is likely to remove some of the constraints to colonisation which arise from asymmetries in competitive fitness between small and large-bodied fishes. Together, these results highlight the importance of post-settlement processes and population size structure to the maintenance of reef-associated fish diversity within contiguous rocky reef habitats.
- Full Text:
Diurnal and nocturnal activity patterns and habitat use of Algoa Bay’s rocky reef fish community
- Authors: Juby, Roxanne
- Date: 2017
- Subjects: Reef fishes -- Effect of light on , Reef fishes -- South Africa , Underwater videography in wildlife monitoring -- South Africa -- Tsitsikamma
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/44827 , vital:25445
- Description: Distinct day-night changes in ambient light are recognised as an important driver of animal activity patterns, with predictable changes to the structure and composition of animal communities between day and night. While day-night variation in the structure of animal communities has been well researched for terrestrial organisms and shallow marine fish communities around the world, there has been limited research of this type conducted on South Africa’s rocky reef fish communities. Consequently, we have a poor understanding of how nocturnal reef fish communities are structured and the day-night activity patterns of species inhabiting both shallow (10-30m) and deep-aphotic (55-100m) reefs. This research was conducted at two warm-temperate South African rocky reefs situated in Algoa Bay. The importance of natural ambient light in shaping the distribution of reef fish communities at shallow and deep-aphotic reef sites was demonstrated using baited remote underwater stereo-video systems (stereo-BRUVs). Distinct day and night fish communities were sampled at shallow and deep-aphotic reef sites. These differences were driven by significant changes in species richness (p < 0.001), species abundance (p < 0.001) and community composition (p < 0.001). These shifts appeared to be driven by day-night activity patterns that were the result of increased detectability of certain species at either day or night. The majority of species belonging to the family Sparidae showed evidence of strict diurnal activity, with their activity being further restricted to shallow reefs. These species showed evidence that they may enter micro-habitats within the reef at night. Similar activity patterns were shown for other top predatory teleost species and low level consumers, with substantial reductions in abundances, or no recordings at night throughout this study. Shallow reefs at day harboured the most diverse fish community. It is therefore hypothesised that this habitat was associated with conditions that offered improved access to resources for many visual species. In addition, the diverse community inhabiting shallow reefs at day is associated with a high risk of negative interspecies interactions, such as competition and predation. It is hypothesised that the biotic conditions associated with shallow reefs at day drove three movement patterns identified in this study; Pagellus bellottii natalensis showed evidence of movement onto shallow reefs at night from adjacent sandy flats, while Pterogymnus laniarius and Squalus sp. 1 showed evidence of movement onto shallow reefs at night from the deep- aphotic reefs that remain dark throughout the diel cycle. It is further hypothesised that other species which showed evidence for nocturnal activity, i.e. Galeichthys ater, Eptatretus hexatrema and Haploblepharus edwardsii, may enter sheltered micro-habitats within the reef during day light hours. These findings have highlighted the complex patterns that have evolved within marine fish to allow multiple species to coexist and exploit productive reef ecosystems by partitioning resource use and activity patterns at day or night, between depth zones and habitat types.
- Full Text:
- Authors: Juby, Roxanne
- Date: 2017
- Subjects: Reef fishes -- Effect of light on , Reef fishes -- South Africa , Underwater videography in wildlife monitoring -- South Africa -- Tsitsikamma
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/44827 , vital:25445
- Description: Distinct day-night changes in ambient light are recognised as an important driver of animal activity patterns, with predictable changes to the structure and composition of animal communities between day and night. While day-night variation in the structure of animal communities has been well researched for terrestrial organisms and shallow marine fish communities around the world, there has been limited research of this type conducted on South Africa’s rocky reef fish communities. Consequently, we have a poor understanding of how nocturnal reef fish communities are structured and the day-night activity patterns of species inhabiting both shallow (10-30m) and deep-aphotic (55-100m) reefs. This research was conducted at two warm-temperate South African rocky reefs situated in Algoa Bay. The importance of natural ambient light in shaping the distribution of reef fish communities at shallow and deep-aphotic reef sites was demonstrated using baited remote underwater stereo-video systems (stereo-BRUVs). Distinct day and night fish communities were sampled at shallow and deep-aphotic reef sites. These differences were driven by significant changes in species richness (p < 0.001), species abundance (p < 0.001) and community composition (p < 0.001). These shifts appeared to be driven by day-night activity patterns that were the result of increased detectability of certain species at either day or night. The majority of species belonging to the family Sparidae showed evidence of strict diurnal activity, with their activity being further restricted to shallow reefs. These species showed evidence that they may enter micro-habitats within the reef at night. Similar activity patterns were shown for other top predatory teleost species and low level consumers, with substantial reductions in abundances, or no recordings at night throughout this study. Shallow reefs at day harboured the most diverse fish community. It is therefore hypothesised that this habitat was associated with conditions that offered improved access to resources for many visual species. In addition, the diverse community inhabiting shallow reefs at day is associated with a high risk of negative interspecies interactions, such as competition and predation. It is hypothesised that the biotic conditions associated with shallow reefs at day drove three movement patterns identified in this study; Pagellus bellottii natalensis showed evidence of movement onto shallow reefs at night from adjacent sandy flats, while Pterogymnus laniarius and Squalus sp. 1 showed evidence of movement onto shallow reefs at night from the deep- aphotic reefs that remain dark throughout the diel cycle. It is further hypothesised that other species which showed evidence for nocturnal activity, i.e. Galeichthys ater, Eptatretus hexatrema and Haploblepharus edwardsii, may enter sheltered micro-habitats within the reef during day light hours. These findings have highlighted the complex patterns that have evolved within marine fish to allow multiple species to coexist and exploit productive reef ecosystems by partitioning resource use and activity patterns at day or night, between depth zones and habitat types.
- Full Text:
Towards standardised reef fish monitoring: an assessment of stereo-video techniques to sample shallow and deep reef fish assemblages
- Authors: Halse, Sarah Jane
- Date: 2017
- Subjects: Reef fishes -- South Africa -- Agulhas, Cape (Cape) , Reef fishes -- Ecology -- South Africa -- Agulhas, Cape (Cape) , Marine biodiversity -- South Africa -- Agulhas, Cape (Cape) , Biotic communities -- South Africa -- Agulhas, Cape (Cape) , Sparidae -- South Africa -- Agulhas, Cape (Cape) , Reef fishes -- Size -- South Africa -- Agulhas, Cape (Cape) , Underwater videography in wildlife monitoring -- South Africa -- Tsitsikamma , Baited remote underwater stereo-video systems (stereo-BRUVs)
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/4635 , vital:20702
- Description: Baited remote underwater stereo-video systems (stereo-BRUVs) were developed to determine fish abundance and size structure in a more unbiased, and relatively non-invasive manner across a broader range of depths and habitats than conventional sampling methods achieve. These characteristics make stereo-BRUVs particularly useful for research inside marine protected areas (MPAs) where researchers are required to minimize disturbance to the protected environment. Although stereo-BRUVs have been widely used around the world, they are novel to South Africa and standardised protocols for their application are required. As such, this study aimed to address i) the effect of different bait types, namely pilchard (Sardinops sagax), squid (Loligo reynaudi) and bivalves (Crassostrea gigas and Perna perna) on the observed reef fish assemblage structure and ii) the effect of artificial illumination (lighting) on the observed reef fish assemblage structure sampled with stereo-BRUVs. One key component of the stereo-BRUVs methodology is the application of bait to attract fish into the field of view. Globally, pilchard is the most often used bait type for stereo- BRUVs, however, its suitability has never been tested comparatively against other bait types for South African conditions. Significant differences in fish abundance and assemblage structure were recorded between stereo-BRUVs deployments when applying the different bait types. The bivalve baits, oyster and mussel, were typically poor when sampling the reef fish assemblages of the region. Pilchard and squid were sampled in similar communities and were able to attract the majority of the reef fish from the region, suggesting they are suitable bait types for stereo-BRUVs in the Agulhas ecoregion. However, a power analysis indicated that roughly twice the amount of samples are required to effectively sample the same abundances of Chrysoblephus laticeps (roman) and Cheilodactylidae (fingerfins) species when sampling with squid as opposed to pilchard. Both bait types can be locally sourced, however, squid is considerably more expensive than pilchard. Considering the difference in cost, together with the fact that twice as much squid bait is required, squid is not a cost-effective option relative to pilchard. As such this study recommends that pilchard is the most appropriate bait for the Agulhas ecoregion of South Africa. Due to low light levels, artificial lighting is required when conducting remote video research in the sub-photic zone. Blue light has a shorter wavelength than other colour lights and attenuates slower through water. In addition, blue lighting has no recorded effect on fish behaviour and has proven to be a successful light colour for underwater sampling. The use of lighting is unavoidable for sub-photic stereo-BRUVs sampling and is recommended for all stereo-BRUVs sampling for comparability of data from environments characterised by different light levels. A study was conducted to test the necessity of artificial lighting when sampling from environments characterised by ambient light levels adequate for stereo- BRUVs sampling, a comparative to measure the effect of light on the fish assemblage structure. Of the more commonly detected fish species (those observed in >50% of the samples), most were seen at similar abundances in samples using lighting and in those without lighting. No significant differences were observed in fish length data between samples collected with and samples collected without lighting. This suggests that standardised stereo-BRUVs sampling across photic zones on the continental shelf of South Africa can be collected without blue lighting when ambient light levels are sufficient to see the survey area.
- Full Text:
- Authors: Halse, Sarah Jane
- Date: 2017
- Subjects: Reef fishes -- South Africa -- Agulhas, Cape (Cape) , Reef fishes -- Ecology -- South Africa -- Agulhas, Cape (Cape) , Marine biodiversity -- South Africa -- Agulhas, Cape (Cape) , Biotic communities -- South Africa -- Agulhas, Cape (Cape) , Sparidae -- South Africa -- Agulhas, Cape (Cape) , Reef fishes -- Size -- South Africa -- Agulhas, Cape (Cape) , Underwater videography in wildlife monitoring -- South Africa -- Tsitsikamma , Baited remote underwater stereo-video systems (stereo-BRUVs)
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/4635 , vital:20702
- Description: Baited remote underwater stereo-video systems (stereo-BRUVs) were developed to determine fish abundance and size structure in a more unbiased, and relatively non-invasive manner across a broader range of depths and habitats than conventional sampling methods achieve. These characteristics make stereo-BRUVs particularly useful for research inside marine protected areas (MPAs) where researchers are required to minimize disturbance to the protected environment. Although stereo-BRUVs have been widely used around the world, they are novel to South Africa and standardised protocols for their application are required. As such, this study aimed to address i) the effect of different bait types, namely pilchard (Sardinops sagax), squid (Loligo reynaudi) and bivalves (Crassostrea gigas and Perna perna) on the observed reef fish assemblage structure and ii) the effect of artificial illumination (lighting) on the observed reef fish assemblage structure sampled with stereo-BRUVs. One key component of the stereo-BRUVs methodology is the application of bait to attract fish into the field of view. Globally, pilchard is the most often used bait type for stereo- BRUVs, however, its suitability has never been tested comparatively against other bait types for South African conditions. Significant differences in fish abundance and assemblage structure were recorded between stereo-BRUVs deployments when applying the different bait types. The bivalve baits, oyster and mussel, were typically poor when sampling the reef fish assemblages of the region. Pilchard and squid were sampled in similar communities and were able to attract the majority of the reef fish from the region, suggesting they are suitable bait types for stereo-BRUVs in the Agulhas ecoregion. However, a power analysis indicated that roughly twice the amount of samples are required to effectively sample the same abundances of Chrysoblephus laticeps (roman) and Cheilodactylidae (fingerfins) species when sampling with squid as opposed to pilchard. Both bait types can be locally sourced, however, squid is considerably more expensive than pilchard. Considering the difference in cost, together with the fact that twice as much squid bait is required, squid is not a cost-effective option relative to pilchard. As such this study recommends that pilchard is the most appropriate bait for the Agulhas ecoregion of South Africa. Due to low light levels, artificial lighting is required when conducting remote video research in the sub-photic zone. Blue light has a shorter wavelength than other colour lights and attenuates slower through water. In addition, blue lighting has no recorded effect on fish behaviour and has proven to be a successful light colour for underwater sampling. The use of lighting is unavoidable for sub-photic stereo-BRUVs sampling and is recommended for all stereo-BRUVs sampling for comparability of data from environments characterised by different light levels. A study was conducted to test the necessity of artificial lighting when sampling from environments characterised by ambient light levels adequate for stereo- BRUVs sampling, a comparative to measure the effect of light on the fish assemblage structure. Of the more commonly detected fish species (those observed in >50% of the samples), most were seen at similar abundances in samples using lighting and in those without lighting. No significant differences were observed in fish length data between samples collected with and samples collected without lighting. This suggests that standardised stereo-BRUVs sampling across photic zones on the continental shelf of South Africa can be collected without blue lighting when ambient light levels are sufficient to see the survey area.
- Full Text:
- «
- ‹
- 1
- ›
- »