Reactor development and process optimisation for the bioremediation of phenolic wastewaters by trametes species
- Authors: Ryan, Daniel Reginald
- Date: 2004-04
- Subjects: Uncatalogued
- Language: English
- Type: Doctoral theses , text
- Identifier: http://hdl.handle.net/10962/191487 , vital:45103
- Description: In many service industries, the source of a company’s value has shifted from capital to knowledge and ideas, the quality of which is dependent on its employees (Wooldridge, 2006). In fact, human resources can be considered part of factor conditions which can positively impact on a firm’s competitive context. This impact can ultimately translate into improved financial results (Porter and Kramer, 2002). There is therefore a growing interest in ways to attract and retain talent. According to the managers of many big companies, well communicated corporate responsibility practices can improve staff attraction as well as retention rates by improving morale (CSRwire, 2002). To explore this, a small, creative company in Johannesburg which engages in charity work was selected as a case study, with the goal being to understand whether their culture of good deeds has a positive impact on staff wellbeing. While the owner of the company actively attempts to make the company an enjoyable place to work at, he appears to have initiated the philanthropic activities in a true spirit of giving, rather than with the motive of engaging staff in order to make more money. Nevertheless, the researcher’s investigative stance is that of an enlightened egoist, and the study focuses on the business case of giving being beneficial to the giver (ultimately the company) in the long term, as well as to the recipient. While the danger of suggesting that philanthropy could be instrumentalised is acknowledged (Morton, 2004), the investigation explores the possibility because such evidence could persuade other companies to become more socially concerned. Through a qualitative approach involving interviews, observation and analysis of video footage, it becomes apparent that there is clearly value for the staff in the charity work they do. Unfortunately the multiple initiatives undertaken to keep staff morale high at the company make it impossible to establish a clear link between the philanthropy and overall wellbeing, but as the study was conducted in the phenomenological paradigm the main concern was with understanding the experience of participants. However, an unexpected finding was that the employees derive great satisfaction from using their professional skills for charity work rather than just donating money to the charity. They feel that their skills uniquely position them to make significant changes to the lives of others, which gives them a sense of pride and achievement that they don’t necessarily experience in their ordinary activities at work. On the basis of this, it is recommended that companies look to involve staff with projects that require their specific expertise when evaluating philanthropic initiatives. , Thesis (PhD) -- Faculty of Science, Biochemistry, Microbiology and Biotechnology, 2004
- Full Text:
- Date Issued: 2004-04
Capillary membrane-immobilised polyphenol oxidase and the bioremediation of industrial phenolic effluent
- Authors: Edwards, Wade
- Date: 1999
- Subjects: Membranes (Technology) , Effluent quality , Pollutants , Phenols , Water -- Purification
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:4095 , http://hdl.handle.net/10962/d1008458
- Description: Waste-generating industrialisation is intrinsically associated with population and economic proliferation. This places considerable emphasis on South Africa's water shortage due to the integral relationship between population growth rate and infrastructure development. Of the various types of industry-generated effluents, those containing organic pollutants such as phenols are generally difficult to remediate. Much work has been reported in the literature on the use of enzymes for the removal of phenols from these waste-streams but little application of this bioremediation approach has reached practical fruition. This study focuses on integrating and synergistically combining the advantages of enzyme-mediated dephenolisation of synthetic and industrial effluent with that of membrane teclmology. The ability of the enzyme polyphenol oxidase to convert phenol and a number of its derivatives to chemically reactive o-quinones has been reported extensively in the literature. These o-quinones can then physically be removed from solution using various precipitation or adsorption techniques. The enzyme is, however, plagued by a product-induced phenomenon known as suicide inactivation, which renders it inactive and thus limits its application as a bioremediation tool. Integrating membrane technology with the enzyme's catalytic ability by immobilising polyphenol oxidase onto polysulphone and poly(ether sulphone) capillary membranes enabled the physical removal of these inhibitory products from the micro-environment of the immobilised enzyme which therefore increased the phenol conversion capability of the immobilised biocatalyst. Under non-immobilised conditions it was found that when exposed to a mixture of various phenols the substrate preference of the enzyme is a function of the R-group. Under immobilised conditions, however, the substrate preference of the enzyme becomes a function of certain transport constraints imposed by the capillary membrane itself. Furthermore, by integrating a quinone-removal process in the enzyme-immobilised bioreactor configuration, a 21-fold increase in the amount of substrate converted per Unit enzyme was observed when compared to the conversion capacity of the inunobilised enzyme without the product removal step. Comparisons were also made using different membrane bioreactor configurations (orientating the capillaries transverse as opposed to parallel to the module axis) and different immobilisation matrices (poly(ether sulphone) and polysulphone capillary membranes). Conversion efficiencies as high as 77% were maintained for several hours using the combination of transverse-flow modules and novel polysulphone capillary membranes. It was therefore concluded that immobilisation of polyphenol oxidase on capillary membranes does indeed show considerable potential for future development.
- Full Text:
- Date Issued: 1999
Development and characterisation of a membrane gradostat bioreactor for the bioremediation of aromatic pollutants using white rot fungi
- Authors: Leukes, Winston D
- Date: 1999
- Subjects: Aromatic compounds Pollutants Fungi Bioremediation Industrial microbiology Biotechnology
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:4032 , http://hdl.handle.net/10962/d1004092
- Description: Bioremediation of aromatic pollutants using the ligninolytic enzymes of the white rot fungi has been thoroughly researched and has been shown to have considerable potential for industrial application. However, little success in scale-up and industrialisation of this technology has been attained due to problems associated with the continuous production of the pollutant-degrading enzymes using conventional bioreactor systems. The low productivities reported result from the incompatibility of conventional submerged culture reactor techniques with the physiological requirements of these fungi which have evolved on a solid-air interface, viz. wood. The enzymes are also produced only during the stationary phase of growth and can therefore be regarded as secondary metabolites. This study reports the conceptualisation, characterisation and evaluation of a novel bioreactor system as a solution to the continuous production of idiophasic pollutant degrading enzymes by the white rot fungus Phanerochaete chlysosporium. The reactor concept evolved from observation of these fungi in their native state, i. e. the metabolism of lignocellulosic material and involves the immobilisation of the organism onto a capillary ultrafiltration membrane. Nutrient gradients established across the biofilm, an inherent characteristic of fixed bed perfusion reactors, are exploited to provide both nutrient rich and nutrient poor zones across the biofilm. This allows growth or primary metabolism in the nutrient rich zone, pushing older biomass into the nutrient poor zone where secondary metabolism is induced by nutrient starvation. In effect, this represents a transformation of the events of a batch culture from a temporal to a spatial domain, allowing continuous production of secondary metabolites over time. Direct contact of the outer part of the biofilm with an air stream simulated the solid-air interface of the native state of the fungus. In order to facilitate the practical application of the membrane gradostat reactor (MGR) concept, conventional capillary membranes and membrane bioreactor modules were first evaluated. These were found to be unsuitable for application of the MGR concept. However, critical analysis of the shortcomings of the conventional systems resulted in the formulation of a set of design criteria for the development of a suitable membrane and module. These design criteria were satisfied by the development of a novel capillary membrane for membrane bioreactors, as well as a transverse flow membrane module, which is a novel approach in membrane bioreactor configuration. For the physiological characterisation of the MGR concept, a single fibre bioreactor unit was designed, which allowed destructive sampling of the biofilm for analysis. Using this system, it was shown that distinct morphological zones could be observed radially across the mature biofilm obtained through MGR operation. That these morphotypes do represent the temporal events of a typical batch culture in a spatial domain was confirmed by following the morphological changes occurring during batch culture of the immobilised fungus where the onset of primary and secondary metabolic conditions were manipulated through control of the nutrient supply. The different morphotypes were correlated to distinct growth phases by comparison of the morphology to the secretion of known enzymatic markers for secondary metabolism, viz. succinate dehydrogenase and cytochrome C oxidoreductase. Detailed structure-function analysis of the biofilm using transmission electron microscopy and adapted enzyme cytochemical staining techniques showed that the biofilm appeared to operate as a co-ordinated unit, with primary and secondary metabolism apparently linked in one thallus through nutrient translocation. This study provided new insights into the physiology of P. chrysosp,o rium and a detailed descriptive model was formulated which correlates well to existing models of wood degradation by the white rot fungi (WRF). Evaluation of the process on a laboratory scale using a novel transverse flow membrane bioreactor showed that a volumetric productivity of 1916 U.L.⁻¹day⁻¹ for manganese peroxidase, one of the pollutant degrading enzymes, could be attained, corresponding to a final concentration of 2 361 U.L.⁻¹ This may be compared to the best reported system (Moreira el at. 1997), where a volumetric productivity of 202 U.L.⁻¹day⁻¹was achieved with a final concentration of 250 U.L.⁻¹ However, MGR productivity is yet to be subjected to rigorous optimisation studies. The process could be operated continuously for 60 days. However, peak productivity could not be maintained for long periods. This was found to be due to physical phenomena relating to the fluid dynamics of the system which caused fluid flow maldistribution, which would have to be resolved through engineering analysis. In evaluation of the MGR concept for aromatic pollutant removal, in this case ρ- cresol, from growth medium, good performance was also achieved. The VmaxKm calculated by linear regression for the MGR was 0.8 (R² = 0.93), which compared favourably to that reported by Lewandowski et al. (1990), who obtained a Vmax/Km of 0.34 for a packed bed reactor treating chlorophenol. It was concluded that the MGR showed suitable potential to warrant further development, and that the descriptive characterisation of the biofilm physiology provided a sufficient basis for process analysis once engineering aspects ofthe system could be resolved.
- Full Text:
- Date Issued: 1999