Exploring outdoor mathematics learning for conceptual understanding through smartphones
- Authors: Pop, Vuyani Samuel
- Date: 2024-04-05
- Subjects: Mathematics Study and teaching (Secondary) South Africa Lejweleputswa District Municipality , Educational technology , Mobile communication systems in education , Math walk , Concept learning
- Language: English
- Type: Academic theses , Master's theses , text
- Identifier: http://hdl.handle.net/10962/436477 , vital:73275
- Description: This study investigated how selected grade 11 mathematics learners used smartphones with the MathCityMap application to learn trigonometry outdoors for conceptual understanding. The aim of this research project was to explore outdoor mathematics learning for conceptual understanding using smartphones. This case study of grade 11 mathematics learners in Lejweleputswa District in the Free State Province, was informed by the Realistic Mathematics Education theory. The study is grounded within an interpretive paradigm and used the explanatory sequential mixed-method design. Forty-two grade 11 mathematics learners participated in the survey and from these 12 were purposively selected to participate in walking the mathematics trails and interviews. The findings revealed that, while the grade 11 mathematics learners acknowledged the significance and value of using smartphones for learning mathematics, they were prohibited from carrying or using smartphones on the school premises, as part of the school code of conduct. The preferred use of smartphones for learning mathematics was understandable, as the survey was conducted at a time when the COVID-19 pandemic and associated restrictions were still in place. The survey unearthed that among applications for learning mathematics, the MathCityMap application was not known by the learners who participated in the survey. Mathematics trails observations indicated that outdoor tasks were a source of mathematical concepts or formal mathematical knowledge, and enabled learners to reinvent mathematical ideas and concepts with adult guidance. Learners were able to make use of appropriate mathematical models and connections. The mathematics trails ignited robust discussions among learners, and prompted learners to draw from prior knowledge, and recognise and identify suitable mathematical models and shapes from the real-world objects. Learners were able to use multiple representations, make necessary mathematical links, and use their prior knowledge to enhance their trigonometry conceptual understanding. This study concluded that using smartphones with the MathCityMap application could enhance conceptual understanding of trigonometry. The implications for teachers are that learners should be exposed to outdoor mathematics learning using smartphones with the MathCityMap application to improve their conceptual understanding. It is hoped that the results of this study can be used by various stakeholders, who include, inter alia, mathematics subject advisors and teacher training institutions, to enhance learners’ conceptual understanding of mathematics. , Thesis (MEd) -- Faculty of Education, Secondary and Post School Education, 2024
- Full Text:
- Date Issued: 2024-04-05
- Authors: Pop, Vuyani Samuel
- Date: 2024-04-05
- Subjects: Mathematics Study and teaching (Secondary) South Africa Lejweleputswa District Municipality , Educational technology , Mobile communication systems in education , Math walk , Concept learning
- Language: English
- Type: Academic theses , Master's theses , text
- Identifier: http://hdl.handle.net/10962/436477 , vital:73275
- Description: This study investigated how selected grade 11 mathematics learners used smartphones with the MathCityMap application to learn trigonometry outdoors for conceptual understanding. The aim of this research project was to explore outdoor mathematics learning for conceptual understanding using smartphones. This case study of grade 11 mathematics learners in Lejweleputswa District in the Free State Province, was informed by the Realistic Mathematics Education theory. The study is grounded within an interpretive paradigm and used the explanatory sequential mixed-method design. Forty-two grade 11 mathematics learners participated in the survey and from these 12 were purposively selected to participate in walking the mathematics trails and interviews. The findings revealed that, while the grade 11 mathematics learners acknowledged the significance and value of using smartphones for learning mathematics, they were prohibited from carrying or using smartphones on the school premises, as part of the school code of conduct. The preferred use of smartphones for learning mathematics was understandable, as the survey was conducted at a time when the COVID-19 pandemic and associated restrictions were still in place. The survey unearthed that among applications for learning mathematics, the MathCityMap application was not known by the learners who participated in the survey. Mathematics trails observations indicated that outdoor tasks were a source of mathematical concepts or formal mathematical knowledge, and enabled learners to reinvent mathematical ideas and concepts with adult guidance. Learners were able to make use of appropriate mathematical models and connections. The mathematics trails ignited robust discussions among learners, and prompted learners to draw from prior knowledge, and recognise and identify suitable mathematical models and shapes from the real-world objects. Learners were able to use multiple representations, make necessary mathematical links, and use their prior knowledge to enhance their trigonometry conceptual understanding. This study concluded that using smartphones with the MathCityMap application could enhance conceptual understanding of trigonometry. The implications for teachers are that learners should be exposed to outdoor mathematics learning using smartphones with the MathCityMap application to improve their conceptual understanding. It is hoped that the results of this study can be used by various stakeholders, who include, inter alia, mathematics subject advisors and teacher training institutions, to enhance learners’ conceptual understanding of mathematics. , Thesis (MEd) -- Faculty of Education, Secondary and Post School Education, 2024
- Full Text:
- Date Issued: 2024-04-05
The use of smartphones and visualisation processes for conceptual understanding of mensuration: a case study of the Mathcitymap Project in Namibia
- Authors: Shimakeleni, Liina
- Date: 2022-04-08
- Subjects: Mathematics Study and teaching (Secondary) Namibia Oshana , Smartphones , Visual learning , Measurement , Concept learning , MathCityMap (MCM) project
- Language: English
- Type: Academic theses , Master's theses , text
- Identifier: http://hdl.handle.net/10962/290649 , vital:56771
- Description: The aim of this study was to investigate and analyse the potential use of smartphones as visualisation tools by learners to enhance conceptual understanding through mathematics trails developed using the MathCityMap (MCM) project. This research study is part of the VIPROmaths project which seeks to research the effective use of visualisation processes in mathematics classrooms in South Africa, Namibia, Zambia, Switzerland and Germany. This study adopted a case of twelve purposively selected Grade 9 learners from a school in the Eheke circuit of the Oshana region, Namibia. This study was framed within a social constructivist perspective and sought to investigate visualisation processes as well as conceptual understanding of learners as they conceptualised the MCM tasks in new, outdoor and collaborative learning situations. The MCM app was installed on selected learners’ smartphones to access and to walk the MCM trails located in various places in the schoolyard. Three MCM trails based on three key themes of mensuration (perimeter, area and volume) were created. Each consisted of four tasks that were sourced and developed in line with the Grade 9 Namibian mathematics syllabus. This study is oriented in an interpretive paradigm and employed video-recorded observations and focus group interviews as qualitative data collection methods. Data collected were analysed first using the themes developed from Ho’s (2010) work on visualisation processes and Kilpatrick, Swafford, and Findell’s (2001) conceptual understanding. During analysis, some themes emerged from the data and were considered. Findings from this study revealed that smartphones afforded learners ample opportunities to enhance the visualisation processes that they went through as they learned the concepts of measurement. In addition to this, some learners were initially pessimistic regarding the use of smartphones for learning purposes. This study recommends that resources such as MCM be effectively be used in formal school settings. The learning of measurement can be advanced in outdoor settings where learners have physical and spatial access to the learning content. Smartphone technology can be used as an additional tool to integrate Information and Communication Technology (ICT) in learning mathematics within the Namibian context. , Thesis (MED) -- Faculty of Education, Education, 2022
- Full Text:
- Date Issued: 2022-04-08
- Authors: Shimakeleni, Liina
- Date: 2022-04-08
- Subjects: Mathematics Study and teaching (Secondary) Namibia Oshana , Smartphones , Visual learning , Measurement , Concept learning , MathCityMap (MCM) project
- Language: English
- Type: Academic theses , Master's theses , text
- Identifier: http://hdl.handle.net/10962/290649 , vital:56771
- Description: The aim of this study was to investigate and analyse the potential use of smartphones as visualisation tools by learners to enhance conceptual understanding through mathematics trails developed using the MathCityMap (MCM) project. This research study is part of the VIPROmaths project which seeks to research the effective use of visualisation processes in mathematics classrooms in South Africa, Namibia, Zambia, Switzerland and Germany. This study adopted a case of twelve purposively selected Grade 9 learners from a school in the Eheke circuit of the Oshana region, Namibia. This study was framed within a social constructivist perspective and sought to investigate visualisation processes as well as conceptual understanding of learners as they conceptualised the MCM tasks in new, outdoor and collaborative learning situations. The MCM app was installed on selected learners’ smartphones to access and to walk the MCM trails located in various places in the schoolyard. Three MCM trails based on three key themes of mensuration (perimeter, area and volume) were created. Each consisted of four tasks that were sourced and developed in line with the Grade 9 Namibian mathematics syllabus. This study is oriented in an interpretive paradigm and employed video-recorded observations and focus group interviews as qualitative data collection methods. Data collected were analysed first using the themes developed from Ho’s (2010) work on visualisation processes and Kilpatrick, Swafford, and Findell’s (2001) conceptual understanding. During analysis, some themes emerged from the data and were considered. Findings from this study revealed that smartphones afforded learners ample opportunities to enhance the visualisation processes that they went through as they learned the concepts of measurement. In addition to this, some learners were initially pessimistic regarding the use of smartphones for learning purposes. This study recommends that resources such as MCM be effectively be used in formal school settings. The learning of measurement can be advanced in outdoor settings where learners have physical and spatial access to the learning content. Smartphone technology can be used as an additional tool to integrate Information and Communication Technology (ICT) in learning mathematics within the Namibian context. , Thesis (MED) -- Faculty of Education, Education, 2022
- Full Text:
- Date Issued: 2022-04-08
- «
- ‹
- 1
- ›
- »