An analysis of ionospheric response to geomagnetic disturbances over South Africa and Antarctica
- Authors: Ngwira, Chigomezyo Mudala
- Date: 2012
- Subjects: Geomagnetism -- South Africa , Geomagnetism -- Antarctica , Ionospheric storms -- South Africa , Ionospheric storms -- Antarctica
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:5534 , http://hdl.handle.net/10962/d1012957
- Description: The ionosphere is of practical importance for satellite-based communication and navigation systems due to its variable refractive nature which affects the propagation of trans-ionospheric radio signals. This thesis reports on the first attempt to investigate the mechanisms responsible for the generation of positive ionospheric storm effects over mid-latitude South Africa. The storm response on 15 May 2005 was associated with equatorward neutral winds and the passage of travelling ionospheric disturbances (TIDs). The two TIDs reported in this thesis propagated with average velocities of ∼438 m/s and ∼515 m/s respectively. The velocity of the first TID (i.e. 438 m/s) is consistent with the velocities calculated in other studies for the same storm event. In a second case study, the positive storm enhancement on both 25 and 27 July 2004 lasted for more than 7 hours, and were classified as long-duration positive ionospheric storm effects. It has been suggested that the long-duration positive storm effects could have been caused by large-scale thermospheric wind circulation and enhanced equatorward neutral winds. These processes were in turn most likely to have been driven by enhanced and sustained energy input in the high-latitude ionosphere due to Joule heating and particle energy injection. This is evident by the prolonged high-level geomagnetic activity on both 25 and 27 July. This thesis also reports on the phase scintillation investigation at the South African Antarctic polar research station during solar minimum conditions. The multi-instrument approach that was used shows that the scintillation events were associated with auroral electron precipitation and that substorms play an essential role in the production of scintillation in the high latitudes. Furthermore, the investigation reveals that external energy injection into the ionosphere is necessary for the development of high-latitude irregularities which produce scintillation. Finally, this thesis highlights inadequate data resources as one of the major shortcomings to be addressed in order to fully understand and distinguish between the various ionospheric storm drivers over the Southern Africa mid-latitude region. The results presented in this thesis on the ionospheric response during geomagnetic storms provide essential information to direct further investigation aimed at developing this emerging field of study in South Africa.
- Full Text:
- Date Issued: 2012
- Authors: Ngwira, Chigomezyo Mudala
- Date: 2012
- Subjects: Geomagnetism -- South Africa , Geomagnetism -- Antarctica , Ionospheric storms -- South Africa , Ionospheric storms -- Antarctica
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:5534 , http://hdl.handle.net/10962/d1012957
- Description: The ionosphere is of practical importance for satellite-based communication and navigation systems due to its variable refractive nature which affects the propagation of trans-ionospheric radio signals. This thesis reports on the first attempt to investigate the mechanisms responsible for the generation of positive ionospheric storm effects over mid-latitude South Africa. The storm response on 15 May 2005 was associated with equatorward neutral winds and the passage of travelling ionospheric disturbances (TIDs). The two TIDs reported in this thesis propagated with average velocities of ∼438 m/s and ∼515 m/s respectively. The velocity of the first TID (i.e. 438 m/s) is consistent with the velocities calculated in other studies for the same storm event. In a second case study, the positive storm enhancement on both 25 and 27 July 2004 lasted for more than 7 hours, and were classified as long-duration positive ionospheric storm effects. It has been suggested that the long-duration positive storm effects could have been caused by large-scale thermospheric wind circulation and enhanced equatorward neutral winds. These processes were in turn most likely to have been driven by enhanced and sustained energy input in the high-latitude ionosphere due to Joule heating and particle energy injection. This is evident by the prolonged high-level geomagnetic activity on both 25 and 27 July. This thesis also reports on the phase scintillation investigation at the South African Antarctic polar research station during solar minimum conditions. The multi-instrument approach that was used shows that the scintillation events were associated with auroral electron precipitation and that substorms play an essential role in the production of scintillation in the high latitudes. Furthermore, the investigation reveals that external energy injection into the ionosphere is necessary for the development of high-latitude irregularities which produce scintillation. Finally, this thesis highlights inadequate data resources as one of the major shortcomings to be addressed in order to fully understand and distinguish between the various ionospheric storm drivers over the Southern Africa mid-latitude region. The results presented in this thesis on the ionospheric response during geomagnetic storms provide essential information to direct further investigation aimed at developing this emerging field of study in South Africa.
- Full Text:
- Date Issued: 2012
Multi-instrument observations of ionospheric irregularities over South Africa
- Authors: Amabayo, Emirant Bertillas
- Date: 2012
- Subjects: Ionosphere -- Research , Sudden ionospheric disturbances , Ionospheric storms , Solar activity , Sunspots
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5476 , http://hdl.handle.net/10962/d1005261 , Ionosphere -- Research , Sudden ionospheric disturbances , Ionospheric storms , Solar activity , Sunspots
- Description: The occurrence of mid-latitude spread F (SF) over South Africa has not been extensively studied since the installation of the DPS-4 digisondes at Madimbo (30.88◦E, 22.38◦S), Grahamstown (33.32◦S, 26.50◦E) and Louisvale (28.51◦S, 21.24◦E). This study is intended to quantify the probability of the occurrence of F region disturbances associated with ionospheric spread F (SF) and L-band scintillation over South Africa. This study used available ionosonde data for 8 years (2000-2008) from the three South African stations. The SF events were identified manually on ionograms and grouped for further statistical analysis into frequency SF (FSF), range SF (RSF) and mixed SF (MSF). The results show that the diurnal pattern of SF occurrence peaks strongly between 23:00 and 00:00 UT. This pattern is true for all seasons and types of SF at Madimbo and Grahamstown during 2001 and 2005, except for RSF which had peaks during autumn and spring during 2001 at Madimbo. The probability of both MSF and FSF tends to increase with decreasing sunspot number (SSN), with a peak in 2005 (a moderate solar activity period). The seasonal peaks of MSF and FSF are more frequent during winter months at both Madimbo and Grahamstown. In this study SF was evident in ∼ 0.03% and ∼ 0.06% of the available ionograms at Madimbo and Grahamstown respectively during the eight year period. The presence of ionospheric irregularities associated with SF and scintillation was investigated using data from selected Global Positioning System (GPS) receiver stations distributed across South Africa. The results, based on GPS total electron content (TEC) and ionosonde measurements, show that SF over this region can most likely be attributed to travelling ionospheric disturbances (TIDs), caused by gravity waves (GWs) and neutral wind composition changes. The GWs were mostly associated with geomagnetic storms and sub-storms that occurred during periods of high and moderate solar activity (2001-2005). SF occurrence during the low solar activity period (2006-2008)can probably be attributed to neutral wind composition changes.
- Full Text:
- Date Issued: 2012
- Authors: Amabayo, Emirant Bertillas
- Date: 2012
- Subjects: Ionosphere -- Research , Sudden ionospheric disturbances , Ionospheric storms , Solar activity , Sunspots
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5476 , http://hdl.handle.net/10962/d1005261 , Ionosphere -- Research , Sudden ionospheric disturbances , Ionospheric storms , Solar activity , Sunspots
- Description: The occurrence of mid-latitude spread F (SF) over South Africa has not been extensively studied since the installation of the DPS-4 digisondes at Madimbo (30.88◦E, 22.38◦S), Grahamstown (33.32◦S, 26.50◦E) and Louisvale (28.51◦S, 21.24◦E). This study is intended to quantify the probability of the occurrence of F region disturbances associated with ionospheric spread F (SF) and L-band scintillation over South Africa. This study used available ionosonde data for 8 years (2000-2008) from the three South African stations. The SF events were identified manually on ionograms and grouped for further statistical analysis into frequency SF (FSF), range SF (RSF) and mixed SF (MSF). The results show that the diurnal pattern of SF occurrence peaks strongly between 23:00 and 00:00 UT. This pattern is true for all seasons and types of SF at Madimbo and Grahamstown during 2001 and 2005, except for RSF which had peaks during autumn and spring during 2001 at Madimbo. The probability of both MSF and FSF tends to increase with decreasing sunspot number (SSN), with a peak in 2005 (a moderate solar activity period). The seasonal peaks of MSF and FSF are more frequent during winter months at both Madimbo and Grahamstown. In this study SF was evident in ∼ 0.03% and ∼ 0.06% of the available ionograms at Madimbo and Grahamstown respectively during the eight year period. The presence of ionospheric irregularities associated with SF and scintillation was investigated using data from selected Global Positioning System (GPS) receiver stations distributed across South Africa. The results, based on GPS total electron content (TEC) and ionosonde measurements, show that SF over this region can most likely be attributed to travelling ionospheric disturbances (TIDs), caused by gravity waves (GWs) and neutral wind composition changes. The GWs were mostly associated with geomagnetic storms and sub-storms that occurred during periods of high and moderate solar activity (2001-2005). SF occurrence during the low solar activity period (2006-2008)can probably be attributed to neutral wind composition changes.
- Full Text:
- Date Issued: 2012
Ionospheric total electron content variability and its influence in radio astronomy
- Authors: Botai, Ondego Joel
- Date: 2006
- Subjects: Electrons , Global Positioning System , Global Positioning System -- Data processing , Ionosphere , Ionospheric radio wave propagation
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5473 , http://hdl.handle.net/10962/d1005258 , Electrons , Global Positioning System , Global Positioning System -- Data processing , Ionosphere , Ionospheric radio wave propagation
- Description: Ionospheric phase delays of radio signals from Global Positioning System (GPS) satellites have been used to compute ionospheric Total Electron Content (TEC). An extended Chapman profle model is used to estimate the electron density profles and TEC. The Chapman profle that can be used to predict TEC over the mid-latitudes only applies during day time. To model night time TEC variability, a polynomial function is fitted to the night time peak electron density profles derived from the online International Reference Ionosphere (IRI) 2001. The observed and predicted TEC and its variability have been used to study ionospheric in°uence on Radio Astronomy in South Africa region. Di®erential phase delays of the radio signals from Radio Astronomy sources have been simulated using TEC. Using the simulated phase delays, the azimuth and declination o®sets of the radio sources have been estimated. Results indicate that, pointing errors of the order of miliarcseconds (mas) are likely if the ionospheric phase delays are not corrected for. These delays are not uniform and vary over a broad spectrum of timescales. This implies that fast frequency (referencing) switching, closure phases and fringe ¯tting schemes for ionospheric correction in astrometry are not the best option as they do not capture the real state of the ionosphere especially if the switching time is greater than the ionospheric TEC variability. However, advantage can be taken of the GPS satellite data available at intervals of a second from the GPS receiver network in South Africa to derive parameters which could be used to correct for the ionospheric delays. Furthermore GPS data can also be used to monitor the occurrence of scintillations, (which might corrupt radio signals) especially for the proposed, Square Kilometer Array (SKA) stations closer to the equatorial belt during magnetic storms and sub-storms. A 10 minute snapshot of GPS data recorded with the Hermanus [34:420 S, 19:220 E ] dual frequency receiver on 2003-04-11 did not show the occurrence of scintillations. This time scale is however too short and cannot be representative. Longer time scales; hours, days, seasons are needed to monitor the occurrence of scintillations.
- Full Text:
- Date Issued: 2006
- Authors: Botai, Ondego Joel
- Date: 2006
- Subjects: Electrons , Global Positioning System , Global Positioning System -- Data processing , Ionosphere , Ionospheric radio wave propagation
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5473 , http://hdl.handle.net/10962/d1005258 , Electrons , Global Positioning System , Global Positioning System -- Data processing , Ionosphere , Ionospheric radio wave propagation
- Description: Ionospheric phase delays of radio signals from Global Positioning System (GPS) satellites have been used to compute ionospheric Total Electron Content (TEC). An extended Chapman profle model is used to estimate the electron density profles and TEC. The Chapman profle that can be used to predict TEC over the mid-latitudes only applies during day time. To model night time TEC variability, a polynomial function is fitted to the night time peak electron density profles derived from the online International Reference Ionosphere (IRI) 2001. The observed and predicted TEC and its variability have been used to study ionospheric in°uence on Radio Astronomy in South Africa region. Di®erential phase delays of the radio signals from Radio Astronomy sources have been simulated using TEC. Using the simulated phase delays, the azimuth and declination o®sets of the radio sources have been estimated. Results indicate that, pointing errors of the order of miliarcseconds (mas) are likely if the ionospheric phase delays are not corrected for. These delays are not uniform and vary over a broad spectrum of timescales. This implies that fast frequency (referencing) switching, closure phases and fringe ¯tting schemes for ionospheric correction in astrometry are not the best option as they do not capture the real state of the ionosphere especially if the switching time is greater than the ionospheric TEC variability. However, advantage can be taken of the GPS satellite data available at intervals of a second from the GPS receiver network in South Africa to derive parameters which could be used to correct for the ionospheric delays. Furthermore GPS data can also be used to monitor the occurrence of scintillations, (which might corrupt radio signals) especially for the proposed, Square Kilometer Array (SKA) stations closer to the equatorial belt during magnetic storms and sub-storms. A 10 minute snapshot of GPS data recorded with the Hermanus [34:420 S, 19:220 E ] dual frequency receiver on 2003-04-11 did not show the occurrence of scintillations. This time scale is however too short and cannot be representative. Longer time scales; hours, days, seasons are needed to monitor the occurrence of scintillations.
- Full Text:
- Date Issued: 2006
- «
- ‹
- 1
- ›
- »