A critical analysis of selected teachers’ perceptions and experiences of the role that visualisation processes play in their Van Hiele level 1 teaching to migrate their learners to the next Van Hiele level
- Authors: Munichinga, Ben Muyambango
- Date: 2019
- Subjects: Hiele, Pierre M. van. Structure and insight , Visualization , Mathematics -- Study and teaching (Secondary) -- Namibia , Geometry -- Study and teaching (Secondary) -- Namibia , Mathematics -- Study and teaching (Secondary) -- Activity programs -- Namibia
- Language: English
- Type: text , Thesis , Masters , MEd
- Identifier: http://hdl.handle.net/10962/96735 , vital:31313
- Description: Learning is a process that involves building on prior knowledge, enriching and exchanging existing understanding where learners’ knowledge base is scaffolded in the construction of knowledge. Research on the teaching and learning of geometry in mathematics suggests that physical manipulation experiences, especially of shapes, is an important process in learning at all ages. The focus of the study was the migration of Grade 8 learners from one Van Hiele level to the next as a result of teachers incorporating visualisation processes and Van Hiele phases of instructions in their teaching. The study underpinned by the social constructivist’s theory, therefore aimed at teachers developing visual materials and using Van Hiele’s phases of instruction to teach two dimensional figures in Geometry. The study was carried out in Namibia, Zambezi region in Bukalo circuit. It involved four schools, with 93 learners and three teacher participants. The research is an interpretive case study of a planned intervention programme, which took a four weeks to complete. Participating learners wrote a Van Hiele Geometric test prior and post the intervention programme to determine their geometric level of thought. Participating teachers all received training on visualisation in mathematics and the Van Hiele theory before the intervention. During the intervention, teacher planned and each taught three lessons on two-dimensional figures. Qualitative data was collected from classroom observation, stimulus recall interviews and focus group interviews. Quantitative data came from the pre and post-test of learners. This study found that on average, Grade 8 learners who participated in the study were operating at levels lower than expected of pupils at their stage of schooling. This study also found that, visualisation processes and the Van Hiele phases are effective when used in geometry lessons to migrate learners from lower Van Hiele levels to higher. For teachers in the same circuit, partnership and planning of difficult topics on an agreed regular basis is recommended. When planning lessons teachers are encouraged to take advantage of the Van Hiele phases of instructions. This study thus recommends the incorporation of visualisation strategies of teaching geometry in particular at primary and lower secondary levels. Mathematics teachers are further encouraged to design visual materials such as Geoboards to use for every topic in geometry. Such visual materials should be carefully developed and evaluated to ensure that their use in the classroom is effectively linked to concepts under discussion in a given lesson.
- Full Text:
- Date Issued: 2019
- Authors: Munichinga, Ben Muyambango
- Date: 2019
- Subjects: Hiele, Pierre M. van. Structure and insight , Visualization , Mathematics -- Study and teaching (Secondary) -- Namibia , Geometry -- Study and teaching (Secondary) -- Namibia , Mathematics -- Study and teaching (Secondary) -- Activity programs -- Namibia
- Language: English
- Type: text , Thesis , Masters , MEd
- Identifier: http://hdl.handle.net/10962/96735 , vital:31313
- Description: Learning is a process that involves building on prior knowledge, enriching and exchanging existing understanding where learners’ knowledge base is scaffolded in the construction of knowledge. Research on the teaching and learning of geometry in mathematics suggests that physical manipulation experiences, especially of shapes, is an important process in learning at all ages. The focus of the study was the migration of Grade 8 learners from one Van Hiele level to the next as a result of teachers incorporating visualisation processes and Van Hiele phases of instructions in their teaching. The study underpinned by the social constructivist’s theory, therefore aimed at teachers developing visual materials and using Van Hiele’s phases of instruction to teach two dimensional figures in Geometry. The study was carried out in Namibia, Zambezi region in Bukalo circuit. It involved four schools, with 93 learners and three teacher participants. The research is an interpretive case study of a planned intervention programme, which took a four weeks to complete. Participating learners wrote a Van Hiele Geometric test prior and post the intervention programme to determine their geometric level of thought. Participating teachers all received training on visualisation in mathematics and the Van Hiele theory before the intervention. During the intervention, teacher planned and each taught three lessons on two-dimensional figures. Qualitative data was collected from classroom observation, stimulus recall interviews and focus group interviews. Quantitative data came from the pre and post-test of learners. This study found that on average, Grade 8 learners who participated in the study were operating at levels lower than expected of pupils at their stage of schooling. This study also found that, visualisation processes and the Van Hiele phases are effective when used in geometry lessons to migrate learners from lower Van Hiele levels to higher. For teachers in the same circuit, partnership and planning of difficult topics on an agreed regular basis is recommended. When planning lessons teachers are encouraged to take advantage of the Van Hiele phases of instructions. This study thus recommends the incorporation of visualisation strategies of teaching geometry in particular at primary and lower secondary levels. Mathematics teachers are further encouraged to design visual materials such as Geoboards to use for every topic in geometry. Such visual materials should be carefully developed and evaluated to ensure that their use in the classroom is effectively linked to concepts under discussion in a given lesson.
- Full Text:
- Date Issued: 2019
Investigating how the use of visual models can enhance the teaching of common fractions for conceptual understanding to Grade 8 learners
- Authors: Katenda, Aune Kashikuka
- Date: 2019
- Subjects: Fractions -- Study and teaching (Secondary)-- Namibia , Mathematics -- Study and teaching (Secondary)-- Namibia , Information visualization , Visual learning -- Case studies
- Language: English
- Type: text , Thesis , Masters , MEd
- Identifier: http://hdl.handle.net/10962/96746 , vital:31314
- Description: The intention of this study was to explore how selected mathematics teachers used visual models to improve the teaching of common fractions for conceptual understanding to Grade 8 learners as a result of an intervention programme. This research study is part of the VIPROmaths project which seeks to research the effective use of visualisation processes in the mathematics classroom in South Africa, Namibia, Zambia, Switzerland and Germany. This study which adopted a case study of teachers in Khomas Region, Namibia, is informed by constructivist learning theory. The study is situated within the interpretive paradigm and a multi-phase mixed method research approach was used. It focussed on analysing the use of visual models when teaching fractions namely: area model, number line model and a set model. The data were collected through survey questionnaires, observation and recall interview. The survey was conducted with the forty three mathematics teachers, from twenty secondary schools in Khomas region. The survey gave an overview of the nature and the use of visual models in schools. Three teachers purposively selected from the survey participated in the intervention program and were observed while teaching and interviewed after their teaching. Data were qualitatively and quantitatively analysed. The findings of this study reveal that visualising fractions is one of the methods that can improve both teaching and learning by providing concrete evidence of otherwise abstract ideas and concepts. The teachers highlighted that models themselves guide learners through to the answer, as compared to working out solutions using symbols only. They further indicated that visual models improve learners’ motivation, enhances understanding of fractions and encourages full participation of learners in the lesson. The study also found that use of visual models encouraged participation and it also boosted learners thinking capability. Teachers in this study preferred to use the area model as they found this model easier and more user-friendly in comparison with the number line and the set models. Teachers did not use the set model because of its complexity. This study concludes that the use of visual models can help enhance the conceptual teaching and understanding of common fractions. It is hoped that the study contributes towards improving the quality teaching and learning of fractions in Namibia. Furthermore, it informs the teacher-training institutions in Namibia to integrate the use of visualisation in their training programmes to promote conceptual understanding of mathematics.
- Full Text:
- Date Issued: 2019
- Authors: Katenda, Aune Kashikuka
- Date: 2019
- Subjects: Fractions -- Study and teaching (Secondary)-- Namibia , Mathematics -- Study and teaching (Secondary)-- Namibia , Information visualization , Visual learning -- Case studies
- Language: English
- Type: text , Thesis , Masters , MEd
- Identifier: http://hdl.handle.net/10962/96746 , vital:31314
- Description: The intention of this study was to explore how selected mathematics teachers used visual models to improve the teaching of common fractions for conceptual understanding to Grade 8 learners as a result of an intervention programme. This research study is part of the VIPROmaths project which seeks to research the effective use of visualisation processes in the mathematics classroom in South Africa, Namibia, Zambia, Switzerland and Germany. This study which adopted a case study of teachers in Khomas Region, Namibia, is informed by constructivist learning theory. The study is situated within the interpretive paradigm and a multi-phase mixed method research approach was used. It focussed on analysing the use of visual models when teaching fractions namely: area model, number line model and a set model. The data were collected through survey questionnaires, observation and recall interview. The survey was conducted with the forty three mathematics teachers, from twenty secondary schools in Khomas region. The survey gave an overview of the nature and the use of visual models in schools. Three teachers purposively selected from the survey participated in the intervention program and were observed while teaching and interviewed after their teaching. Data were qualitatively and quantitatively analysed. The findings of this study reveal that visualising fractions is one of the methods that can improve both teaching and learning by providing concrete evidence of otherwise abstract ideas and concepts. The teachers highlighted that models themselves guide learners through to the answer, as compared to working out solutions using symbols only. They further indicated that visual models improve learners’ motivation, enhances understanding of fractions and encourages full participation of learners in the lesson. The study also found that use of visual models encouraged participation and it also boosted learners thinking capability. Teachers in this study preferred to use the area model as they found this model easier and more user-friendly in comparison with the number line and the set models. Teachers did not use the set model because of its complexity. This study concludes that the use of visual models can help enhance the conceptual teaching and understanding of common fractions. It is hoped that the study contributes towards improving the quality teaching and learning of fractions in Namibia. Furthermore, it informs the teacher-training institutions in Namibia to integrate the use of visualisation in their training programmes to promote conceptual understanding of mathematics.
- Full Text:
- Date Issued: 2019
- «
- ‹
- 1
- ›
- »