The enemy release hypothesis and beyond: Lagarosiphon major invasion dynamics and management options for New Zealand using native natural enemies from South Africa
- Authors: Baso, Nompumelelo Catherine
- Date: 2024-04-05
- Subjects: Enemy release hypothesis , Lagarosiphon major Biological control New Zealand , Hydrellia , Submerged aquatic vegetation , Invasion ecology
- Language: English
- Type: Academic theses , Doctoral theses , text
- Identifier: http://hdl.handle.net/10962/435627 , vital:73174 , DOI 10.21504/10962/435627
- Description: Numerous scientific investigations have demonstrated the destructive impact that exotic species can have on ecosystem services beyond a specific threshold. There are many explanations for why introduced plants are likely to be more successful outside their native range. One such explanation is offered by the Enemy Release Hypothesis (ERH), which states that plants automatically become superior competitors outside of their natural range due to release from top-down stressors (herbivory, parasites, and diseases) that is evident in the absence of their natural enemies. The underlying assumption of the ERH is that natural enemies are important regulators of plant species populations, and that the pressures from these natural enemies are felt more readily by native species compared to alien plants. Consequently, in the absence of such pressures, the ERH assumes that exotic plants can allocate more resources towards growth and reproduction, while effectively maintaining accumulated biomass. Classical biological control has previously been cited as evidence for the enemy release hypothesis. Therefore, the overarching aim and theme of this thesis was to investigate the role of ERH on the invasiveness of Lagarosiphon major (Ridl.) Moss ex Wager (Hydrocharitaceae) in New Zealand. Firstly, a literature search and a meta-analysis was used to synthesize existing studies in order to test for general applicability of this hypothesis to aquatic plant invasions. Furthermore, an empirical investigation was conducted in order to directly quantify enemy release in L. major populations invaded areas of New Zealand. To achieve this, various plant parameters of this plant, overall macrophyte and invertebrate diversity were measured and compared between sites in the native range in South Africa and the invaded areas in New Zealand. Although the meta-analysis showed variable evidence for this hypothesis depending on various modulating factors such as study type, plant growth form and measured parameters, for L. major, there was strong evidence of enemy release. The biogeographical comparisons showed that L. major exhibited increased fitness in most of the invaded sites, marked by elevated biomass accumulation, significantly higher shoot production, and the displacement of native plant species. The observed fitness advantages were directly correlated to a decrease in herbivory diversity and pressure upon the plant's introduction to New Zealand. Unlike the native populations, which contend with the presence of at least four co-occurring herbivores, including specialist herbivores, the invaded range had a substantially lower herbivore diversity, with only Hygraula nitens Butler (Lepidoptera: Crambidae) syn. Nymphula nitens, significantly damaging L. major. These findings emphasize the importance of understanding invasion ecology and theories such as ERH in order to advance aquatic plant management and also present valuable insights for developing effective strategies to mitigate the impact of invasive alien species on aquatic ecosystems. Specifically, results from the empirical investigation provide evidence in support of the ERH and highlight the suitability of implementing biological control strategies to manage the L. major invasion in New Zealand. Previous studies have shown the suitability of two specialist herbivores, Hydrellia lagarosiphon Deeming (Diptera: Ephydridae), and Polypedilum tuburcinatum Andersen (Diptera: Chironomidae), as potential biological control agents. This control strategy presents a sustainable and ecologically responsible approach, promoting coexistence between exotic plants and native species rather than displacement through competitive exclusion. With the apparent dominance of L. major at various New Zealand localities, the subsequent objective of this thesis was to investigate the competitive interactions between L. major and another invasive Hydrocharitaceae, Egeria densa Planchon, as driven by herbivory. Combinations of two host specific Ephydrid flies, H. lagarosiphon and H. egeriae, were used at eight different factorial combination of planting densities. The analysis of plant parameters and the application of inverse linear models revealed that L. major often exhibits relatively higher fitness, especially in low monoculture treatments when the two insects were isolated. However, multiple inverse linear models revealed that actual competitive outcomes are dependent on factors such as initial plant density and herbivory regime, with competitive interactions generally being mild. Nevertheless, the presence of H. lagarosiphon resulted in facilitation of E. densa growth. Thus, even at lower densities, these insects still had an impact on the observed interactions, further emphasizing suitability as damaging biological control agents. Lastly, focusing on the abiotic component of L. major invasion, Species Distribution Models (SDMs) were employed to map potential suitable habitat for this species, as well as predict the consequences of climate change on this. Correlative and mechanistic modelling was also used to simulate suitable habitat for potential biological control agents, thus addressing the potential for mismatches between host plant distribution and insect suitable range. The Maximum Entropy Species Distribution Modelling (MaxEnt) algorithm revealed that more than 90% of all freshwater ecosystems in New Zealand are susceptible to L. major invasion, with suitability projected to expand further under future climate scenarios. Moreover, correlative modelling using this method suggests limited suitable habitat for both herbivores. However, degree-day modelling, which also takes into account the physiological requirements, showed that H. lagarosiphon has the potential to produce viable populations in several parts of New Zealand. Overall, this thesis explored the intricate web of biotic and abiotic factors influencing the success of L. major outside its native range. The results emphasize the potential impacts of climate change on the invasion potential and management strategies for L. major. The findings also advocate for the implementation of sustainable and ecologically sound management solutions, such as biological control, to manage this species. , Thesis (PhD) -- Faculty of Science, Botany, 2024
- Full Text:
- Date Issued: 2024-04-05
- Authors: Baso, Nompumelelo Catherine
- Date: 2024-04-05
- Subjects: Enemy release hypothesis , Lagarosiphon major Biological control New Zealand , Hydrellia , Submerged aquatic vegetation , Invasion ecology
- Language: English
- Type: Academic theses , Doctoral theses , text
- Identifier: http://hdl.handle.net/10962/435627 , vital:73174 , DOI 10.21504/10962/435627
- Description: Numerous scientific investigations have demonstrated the destructive impact that exotic species can have on ecosystem services beyond a specific threshold. There are many explanations for why introduced plants are likely to be more successful outside their native range. One such explanation is offered by the Enemy Release Hypothesis (ERH), which states that plants automatically become superior competitors outside of their natural range due to release from top-down stressors (herbivory, parasites, and diseases) that is evident in the absence of their natural enemies. The underlying assumption of the ERH is that natural enemies are important regulators of plant species populations, and that the pressures from these natural enemies are felt more readily by native species compared to alien plants. Consequently, in the absence of such pressures, the ERH assumes that exotic plants can allocate more resources towards growth and reproduction, while effectively maintaining accumulated biomass. Classical biological control has previously been cited as evidence for the enemy release hypothesis. Therefore, the overarching aim and theme of this thesis was to investigate the role of ERH on the invasiveness of Lagarosiphon major (Ridl.) Moss ex Wager (Hydrocharitaceae) in New Zealand. Firstly, a literature search and a meta-analysis was used to synthesize existing studies in order to test for general applicability of this hypothesis to aquatic plant invasions. Furthermore, an empirical investigation was conducted in order to directly quantify enemy release in L. major populations invaded areas of New Zealand. To achieve this, various plant parameters of this plant, overall macrophyte and invertebrate diversity were measured and compared between sites in the native range in South Africa and the invaded areas in New Zealand. Although the meta-analysis showed variable evidence for this hypothesis depending on various modulating factors such as study type, plant growth form and measured parameters, for L. major, there was strong evidence of enemy release. The biogeographical comparisons showed that L. major exhibited increased fitness in most of the invaded sites, marked by elevated biomass accumulation, significantly higher shoot production, and the displacement of native plant species. The observed fitness advantages were directly correlated to a decrease in herbivory diversity and pressure upon the plant's introduction to New Zealand. Unlike the native populations, which contend with the presence of at least four co-occurring herbivores, including specialist herbivores, the invaded range had a substantially lower herbivore diversity, with only Hygraula nitens Butler (Lepidoptera: Crambidae) syn. Nymphula nitens, significantly damaging L. major. These findings emphasize the importance of understanding invasion ecology and theories such as ERH in order to advance aquatic plant management and also present valuable insights for developing effective strategies to mitigate the impact of invasive alien species on aquatic ecosystems. Specifically, results from the empirical investigation provide evidence in support of the ERH and highlight the suitability of implementing biological control strategies to manage the L. major invasion in New Zealand. Previous studies have shown the suitability of two specialist herbivores, Hydrellia lagarosiphon Deeming (Diptera: Ephydridae), and Polypedilum tuburcinatum Andersen (Diptera: Chironomidae), as potential biological control agents. This control strategy presents a sustainable and ecologically responsible approach, promoting coexistence between exotic plants and native species rather than displacement through competitive exclusion. With the apparent dominance of L. major at various New Zealand localities, the subsequent objective of this thesis was to investigate the competitive interactions between L. major and another invasive Hydrocharitaceae, Egeria densa Planchon, as driven by herbivory. Combinations of two host specific Ephydrid flies, H. lagarosiphon and H. egeriae, were used at eight different factorial combination of planting densities. The analysis of plant parameters and the application of inverse linear models revealed that L. major often exhibits relatively higher fitness, especially in low monoculture treatments when the two insects were isolated. However, multiple inverse linear models revealed that actual competitive outcomes are dependent on factors such as initial plant density and herbivory regime, with competitive interactions generally being mild. Nevertheless, the presence of H. lagarosiphon resulted in facilitation of E. densa growth. Thus, even at lower densities, these insects still had an impact on the observed interactions, further emphasizing suitability as damaging biological control agents. Lastly, focusing on the abiotic component of L. major invasion, Species Distribution Models (SDMs) were employed to map potential suitable habitat for this species, as well as predict the consequences of climate change on this. Correlative and mechanistic modelling was also used to simulate suitable habitat for potential biological control agents, thus addressing the potential for mismatches between host plant distribution and insect suitable range. The Maximum Entropy Species Distribution Modelling (MaxEnt) algorithm revealed that more than 90% of all freshwater ecosystems in New Zealand are susceptible to L. major invasion, with suitability projected to expand further under future climate scenarios. Moreover, correlative modelling using this method suggests limited suitable habitat for both herbivores. However, degree-day modelling, which also takes into account the physiological requirements, showed that H. lagarosiphon has the potential to produce viable populations in several parts of New Zealand. Overall, this thesis explored the intricate web of biotic and abiotic factors influencing the success of L. major outside its native range. The results emphasize the potential impacts of climate change on the invasion potential and management strategies for L. major. The findings also advocate for the implementation of sustainable and ecologically sound management solutions, such as biological control, to manage this species. , Thesis (PhD) -- Faculty of Science, Botany, 2024
- Full Text:
- Date Issued: 2024-04-05
Remote sensing as a monitoring solution for water hyacinth (Pontederia crassipes) in the context of the biological control programme at Hartbeespoort Dam
- Authors: Kinsler, David Louis
- Date: 2023-10-13
- Subjects: Remote sensing , Water hyacinth South Africa Hartbeespoort , Aquatic weeds Biological control South Africa Hartbeespoort , Megamelus scutellaris , Eutrophication
- Language: English
- Type: Academic theses , Master's theses , text
- Identifier: http://hdl.handle.net/10962/424599 , vital:72167
- Description: Water hyacinth (Pontederia crassipes (C.Mart.) Solms (Pontederiaceae)) is a significant aquatic weed both globally and in South Africa. Despite notable success with biological control of other invasive macrophytes, the plant remains as a problematic weed in many aquatic systems in South Africa, particularly due to the eutrophic status of many of its water systems, as well as the plant’s tolerance to cooler climatic conditions than most of its existing biological control agents. Hartbeespoort Dam, located about 30 kilometres west of Pretoria, South Africa, has been infamously infested with water hyacinth for decades, which impacts the important socioeconomic utility of the dam and functioning of natural ecological processes in the system. The dam has a long history of efforts to control water hyacinth, which include widespread herbicidal spray, mechanical removal and classical biological control programmes since the early 1990s - mostly with limited or short-lived success. However, after the introduction of a new, cold-tolerant biological control agent, Megamelus scutellaris Berg (Hemiptera: Delphacidae) in 2018 with an inundative release strategy, the water hyacinth dropped significantly from a maximum cover of about 45 percent (819 hectares) down to less than two percent (40 hectares) over a three-month period (November 2019 – January 2020). This was significant, as it marked the first successful biological control of water hyacinth in a eutrophic, temperate system in South Africa. However, due to the scale of Hartbeespoort Dam (1820 hectares) and the high spatiotemporal variation of the floating mats across time and space, quantifying and monitoring these rapid changes has proved difficult. In response to this problem, this thesis proposed a remote sensing solution to address the need for accurate, timely and readily accessible monitoring data of the water hyacinth population on the dam. Leveraging the temporally frequent (< 5 days revisit time) Sentinel-2 multispectral satellite data, as well as the powerful cloud-computing resources of Google Earth Engine, this thesis developed and deployed a relatively simple and robust index-based decision tree classification method to demonstrate the value of these technologies as an effective monitoring and analysis tool for monitoring large macrophyte infestations. To this end, several challenges had to be overcome in order to produce easily accessible data that was accurate and reliable. For example, due to the size of the Sentinel-2 Level-1C image dataset from August 2015 to March 2021 (n = 654), an automated process of filtering out clouded images was required. Additionally, the co-presence of algal and cyanobacterial blooms necessitated the development of a novel index, coined the Algae Resistant Macrophyte Index (ARMI), to deal with the challenges of accurate macrophyte detection. The high spatiotemporal variability of the floating mats meant that a typical, location-based confusion matrix as a means of assessing the accuracy of the decision tree classifier required a different approach which compared the total classified areas with higher resolution images. This thesis aims to demonstrate the utility of remote sensing tools to provide effective monitoring information to managers, researchers and other stakeholders. There is scope to expand to more areas in South Africa and beyond and may prove an invaluable tool to augment and support on-going and future macrophyte monitoring programmes. , Thesis (MSc) -- Faculty of Science, Geography, 2023
- Full Text:
- Date Issued: 2023-10-13
- Authors: Kinsler, David Louis
- Date: 2023-10-13
- Subjects: Remote sensing , Water hyacinth South Africa Hartbeespoort , Aquatic weeds Biological control South Africa Hartbeespoort , Megamelus scutellaris , Eutrophication
- Language: English
- Type: Academic theses , Master's theses , text
- Identifier: http://hdl.handle.net/10962/424599 , vital:72167
- Description: Water hyacinth (Pontederia crassipes (C.Mart.) Solms (Pontederiaceae)) is a significant aquatic weed both globally and in South Africa. Despite notable success with biological control of other invasive macrophytes, the plant remains as a problematic weed in many aquatic systems in South Africa, particularly due to the eutrophic status of many of its water systems, as well as the plant’s tolerance to cooler climatic conditions than most of its existing biological control agents. Hartbeespoort Dam, located about 30 kilometres west of Pretoria, South Africa, has been infamously infested with water hyacinth for decades, which impacts the important socioeconomic utility of the dam and functioning of natural ecological processes in the system. The dam has a long history of efforts to control water hyacinth, which include widespread herbicidal spray, mechanical removal and classical biological control programmes since the early 1990s - mostly with limited or short-lived success. However, after the introduction of a new, cold-tolerant biological control agent, Megamelus scutellaris Berg (Hemiptera: Delphacidae) in 2018 with an inundative release strategy, the water hyacinth dropped significantly from a maximum cover of about 45 percent (819 hectares) down to less than two percent (40 hectares) over a three-month period (November 2019 – January 2020). This was significant, as it marked the first successful biological control of water hyacinth in a eutrophic, temperate system in South Africa. However, due to the scale of Hartbeespoort Dam (1820 hectares) and the high spatiotemporal variation of the floating mats across time and space, quantifying and monitoring these rapid changes has proved difficult. In response to this problem, this thesis proposed a remote sensing solution to address the need for accurate, timely and readily accessible monitoring data of the water hyacinth population on the dam. Leveraging the temporally frequent (< 5 days revisit time) Sentinel-2 multispectral satellite data, as well as the powerful cloud-computing resources of Google Earth Engine, this thesis developed and deployed a relatively simple and robust index-based decision tree classification method to demonstrate the value of these technologies as an effective monitoring and analysis tool for monitoring large macrophyte infestations. To this end, several challenges had to be overcome in order to produce easily accessible data that was accurate and reliable. For example, due to the size of the Sentinel-2 Level-1C image dataset from August 2015 to March 2021 (n = 654), an automated process of filtering out clouded images was required. Additionally, the co-presence of algal and cyanobacterial blooms necessitated the development of a novel index, coined the Algae Resistant Macrophyte Index (ARMI), to deal with the challenges of accurate macrophyte detection. The high spatiotemporal variability of the floating mats meant that a typical, location-based confusion matrix as a means of assessing the accuracy of the decision tree classifier required a different approach which compared the total classified areas with higher resolution images. This thesis aims to demonstrate the utility of remote sensing tools to provide effective monitoring information to managers, researchers and other stakeholders. There is scope to expand to more areas in South Africa and beyond and may prove an invaluable tool to augment and support on-going and future macrophyte monitoring programmes. , Thesis (MSc) -- Faculty of Science, Geography, 2023
- Full Text:
- Date Issued: 2023-10-13
A native weevil and an exotic planthopper: investigating potential biological control agents for nymphaea mexicana zuccarini (nymphaeaceae) and its hybrids in South Africa
- Authors: Reid, Megan Kim
- Date: 2023-03-31
- Subjects: Nymphaeaceae South Africa , Water lilies Biological control South Africa , Host specificity , Genetic variation , Bagous longulus
- Language: English
- Type: Academic theses , Doctoral theses , text
- Identifier: http://hdl.handle.net/10962/422554 , vital:71957 , DOI 10.21504/10962/422554
- Description: Nymphaea mexicana Zuccarini (Nymphaeaceae) is an invasive plant originating from southern USA and Mexico that has become problematic in South Africa, invading several water bodies around the country. Manual removal of this plant is very labour intensive and is not cost efficient or effective for long term control, while the use of herbicides is damaging to the environment and expensive. Consequently, this plant is a desirable candidate for biological control, which takes advantage of enemy release of the target weed and aims to re-establish population suppression induced by host specific natural enemies. Initiating biological control requires that several steps are followed to maximise the success of the programme, and the first few of these, including overseas surveys in the native range of the plant, have already been completed. This thesis aimed to continue biological control research for this species to take further steps at effectively managing the plant. Firstly, pre-release surveys in the invaded range are necessary to: determine what factors (including enemy release) contribute to the invasiveness of the target weed; establish a baseline of information to allow for comparison after biological control agents have been released; and identify any insect herbivores that may already be present in the country. The pre-release surveys conducted in this study revealed useful information about N. mexicana invasions in South Africa and provided evidence that enemy release is applicable to this case. However, these studies determined that a native weevil, Bagous longulus Gyllenhal (Coleoptera: Curculionidae), has expanded its host range to include the exotic N. mexicana at three sites, and may thus have potential for management of the species through augmentative releases. The invasion of N. mexicana in South Africa is further complicated by the presence of several Nymphaea hybrids originating from a complex history of horticultural trade. Although previous research has shown that several hybrid groups are present in South Africa, their parentage is not known. As biological control requires the use of host specific insects adapted to overcome the unique chemical and morphological defences utilised by plant species, hybrids are notoriously difficult to manage because they possess intermediate characters inherited from parent species to which natural enemies may not have adapted. Although biological control of hybrids is challenging, other case studies have demonstrated that it is possible to find suitable agents, but the chances of success are increased if putative parents of the hybrids are known so that they can be surveyed for natural enemies. Further molecular studies including possible parents of the Nymphaea hybrids in South Africa were thus carried out in this thesis to focus future surveying efforts. Two main hybrid groups were identified with genetic similarity to two tested putative Nymphaea parents, and this will allow further investigations of these species to improve the chances of successfully managing these hybrid groups. Some of the tested hybrids showed genetic contributions from multiple groups, some of which were unidentified, so it is necessary to prioritise the most problematic hybrids for biological control. With more insight into the genetic makeup of the Nymphaea hybrids in South Africa, investigations into the host specificity of potential biological control agents can be conducted. The ideal biological control agent should have a broad enough host range to impact and survive on both N. mexicana and its hybrids, but without a host range so broad that it would pose risk to native South African species. Host specificity trials are thus necessary to determine the suitability of potential agents. The identification of B. longulus feeding on N. mexicana during pre-release surveys motivated further investigations to determine the natural distribution, field host range, and host specificity of B. longulus in experimentally controlled conditions. Further surveys were therefore conducted at native Nymphaea sites around South Africa in addition to host specificity trials using the native Nymphaea nouchali Burm. f. (Nymphaeaceae), two populations of N. mexicana, and a cultivated hybrid. Results from the surveys and host specificity tests suggest that B. longulus is widely distributed across South Africa, is specific to Nymphaea with no observed preference between N. mexicana and the native N. nouchali, and does not perform well on Nymphaea hybrids. Hence, B. longulus is promising for use in new association biological control through augmentative releases but is not suitable for management of hybrids. In addition to the potential use of the South African B. longulus, it is necessary to conduct host specificity trials for natural enemies from the native range of N. mexicana that were prioritised in previous studies. Megamelus toddi Beamer (Hemiptera: Delphacidae) is one such species that was imported into quarantined laboratory conditions from Florida, USA. Host specificity trials were conducted using the same test plants as described for the studies on B. longulus, in addition to multigeneration trials to determine how long M. toddi could survive on non-target host plants. As with the B. longulus studies, no statistically significant differences in preference were observed between N. mexicana and N. nouchali, but M. toddi could not complete development on the test hybrid, indicating that this species is also unsuitable for the management of Nymphaea hybrids. Despite suboptimal plant health, M. toddi completed development for three generations on the native N. nouchali. This lack of host specificity deems M. toddi unsafe for release in South Africa but highlights the importance of following predefined steps to develop a biological control programme. The concluding chapter of this thesis discusses the aforementioned findings in a broader context by considering the driving forces of plant invasions in general and specifically for N. mexicana in South Africa. Case studies are also consulted to provide insight into how to proceed with managing Nymphaea hybrids in South Africa, while the factors governing host specificity and host range expansion are also discussed and considered in the context of B. longulus and M. toddi. Finally, after a consideration of the limitations of these studies, recommendations are made to continue the development of biological control for N. mexicana in South Africa. , Thesis (PhD) -- Faculty of Science, Zoology and Entomology, 2023
- Full Text:
- Date Issued: 2023-03-31
- Authors: Reid, Megan Kim
- Date: 2023-03-31
- Subjects: Nymphaeaceae South Africa , Water lilies Biological control South Africa , Host specificity , Genetic variation , Bagous longulus
- Language: English
- Type: Academic theses , Doctoral theses , text
- Identifier: http://hdl.handle.net/10962/422554 , vital:71957 , DOI 10.21504/10962/422554
- Description: Nymphaea mexicana Zuccarini (Nymphaeaceae) is an invasive plant originating from southern USA and Mexico that has become problematic in South Africa, invading several water bodies around the country. Manual removal of this plant is very labour intensive and is not cost efficient or effective for long term control, while the use of herbicides is damaging to the environment and expensive. Consequently, this plant is a desirable candidate for biological control, which takes advantage of enemy release of the target weed and aims to re-establish population suppression induced by host specific natural enemies. Initiating biological control requires that several steps are followed to maximise the success of the programme, and the first few of these, including overseas surveys in the native range of the plant, have already been completed. This thesis aimed to continue biological control research for this species to take further steps at effectively managing the plant. Firstly, pre-release surveys in the invaded range are necessary to: determine what factors (including enemy release) contribute to the invasiveness of the target weed; establish a baseline of information to allow for comparison after biological control agents have been released; and identify any insect herbivores that may already be present in the country. The pre-release surveys conducted in this study revealed useful information about N. mexicana invasions in South Africa and provided evidence that enemy release is applicable to this case. However, these studies determined that a native weevil, Bagous longulus Gyllenhal (Coleoptera: Curculionidae), has expanded its host range to include the exotic N. mexicana at three sites, and may thus have potential for management of the species through augmentative releases. The invasion of N. mexicana in South Africa is further complicated by the presence of several Nymphaea hybrids originating from a complex history of horticultural trade. Although previous research has shown that several hybrid groups are present in South Africa, their parentage is not known. As biological control requires the use of host specific insects adapted to overcome the unique chemical and morphological defences utilised by plant species, hybrids are notoriously difficult to manage because they possess intermediate characters inherited from parent species to which natural enemies may not have adapted. Although biological control of hybrids is challenging, other case studies have demonstrated that it is possible to find suitable agents, but the chances of success are increased if putative parents of the hybrids are known so that they can be surveyed for natural enemies. Further molecular studies including possible parents of the Nymphaea hybrids in South Africa were thus carried out in this thesis to focus future surveying efforts. Two main hybrid groups were identified with genetic similarity to two tested putative Nymphaea parents, and this will allow further investigations of these species to improve the chances of successfully managing these hybrid groups. Some of the tested hybrids showed genetic contributions from multiple groups, some of which were unidentified, so it is necessary to prioritise the most problematic hybrids for biological control. With more insight into the genetic makeup of the Nymphaea hybrids in South Africa, investigations into the host specificity of potential biological control agents can be conducted. The ideal biological control agent should have a broad enough host range to impact and survive on both N. mexicana and its hybrids, but without a host range so broad that it would pose risk to native South African species. Host specificity trials are thus necessary to determine the suitability of potential agents. The identification of B. longulus feeding on N. mexicana during pre-release surveys motivated further investigations to determine the natural distribution, field host range, and host specificity of B. longulus in experimentally controlled conditions. Further surveys were therefore conducted at native Nymphaea sites around South Africa in addition to host specificity trials using the native Nymphaea nouchali Burm. f. (Nymphaeaceae), two populations of N. mexicana, and a cultivated hybrid. Results from the surveys and host specificity tests suggest that B. longulus is widely distributed across South Africa, is specific to Nymphaea with no observed preference between N. mexicana and the native N. nouchali, and does not perform well on Nymphaea hybrids. Hence, B. longulus is promising for use in new association biological control through augmentative releases but is not suitable for management of hybrids. In addition to the potential use of the South African B. longulus, it is necessary to conduct host specificity trials for natural enemies from the native range of N. mexicana that were prioritised in previous studies. Megamelus toddi Beamer (Hemiptera: Delphacidae) is one such species that was imported into quarantined laboratory conditions from Florida, USA. Host specificity trials were conducted using the same test plants as described for the studies on B. longulus, in addition to multigeneration trials to determine how long M. toddi could survive on non-target host plants. As with the B. longulus studies, no statistically significant differences in preference were observed between N. mexicana and N. nouchali, but M. toddi could not complete development on the test hybrid, indicating that this species is also unsuitable for the management of Nymphaea hybrids. Despite suboptimal plant health, M. toddi completed development for three generations on the native N. nouchali. This lack of host specificity deems M. toddi unsafe for release in South Africa but highlights the importance of following predefined steps to develop a biological control programme. The concluding chapter of this thesis discusses the aforementioned findings in a broader context by considering the driving forces of plant invasions in general and specifically for N. mexicana in South Africa. Case studies are also consulted to provide insight into how to proceed with managing Nymphaea hybrids in South Africa, while the factors governing host specificity and host range expansion are also discussed and considered in the context of B. longulus and M. toddi. Finally, after a consideration of the limitations of these studies, recommendations are made to continue the development of biological control for N. mexicana in South Africa. , Thesis (PhD) -- Faculty of Science, Zoology and Entomology, 2023
- Full Text:
- Date Issued: 2023-03-31
Effect of Helicosporidium sp. (Chlorophyta; Trebouxiophyceae) infection on Cyrtobagous salviniae Calder and Sands (Coleoptera: Curculionidae), a biological control agent for the invasive Salvinia molesta D.S. Mitchell (Salviniaceae) in South
- Authors: Mphephu, Tshililo Emmanuel
- Date: 2022-10-14
- Subjects: Salvinia molesta South Africa , Weeds Biological control , Cyrtobagous salviniae , Ketoconazole
- Language: English
- Type: Academic theses , Doctoral theses , text
- Identifier: http://hdl.handle.net/10962/365815 , vital:65792 , DOI https://doi.org/10.21504/10962/365815
- Description: The effectiveness of established biological control agents depends on biotic and abiotic interactions in the introduced range. The weevil, Cyrtobagous salviniae Calder and Sands (Coleoptera: Curculionidae), was released as a biological control against Salvinia molesta D.S. Mitchell (Salviniaceae) in South Africa in 1985. This agent has been highly successful against S. molesta and has significantly reduced the weed’s populations around the country. However, in 2007, the parasitic alga, Helicosporidium sp. (an undescribed species), was detected in field-collected C. salviniae adults in South Africa. The distribution and impacts of this disease on the weevil and its efficacy as a control agent were not known. In this thesis, the prevalence, infection load, and impact of Helicosporidium sp. on C. salviniae was determined. In 2019, adult weevils were collected from 10 sites across the Eastern Cape, KwaZulu-Natal, Limpopo, and Western Cape provinces and screened to determine the occurrence, infection load, and geographic distribution of Helicosporidium sp. Transmission mechanisms of this disease in C. salviniae were then evaluated. The possible impact of Helicosporidium sp. was assessed by comparing the feeding rates and the reproductive output of the diseased and healthy adults of C. salviniae. An attempt was then made to eliminate the disease in C. salviniae through the application of the antibiotic, ketoconazole. Further, the role of temperature on infection load in C. salviniae was also assessed. Finally, recommendations for the long-term biological control programme against S. molesta in South Africa were made. The disease covers the entire distribution range of C. salviniae in South Africa, with the disease occurrence rate ranging from 92.15% to 100% insects infected per site. Helicosporidium sp. was found to transmit vertically within the populations of C. salviniae. Infection by the Helicosporidium sp. disease reduced the reproductive output of C. salviniae as well its impact on biomass reduction of S. molesta when a diseased culture was compared to a healthy culture from the USA. 98.44 to 98.55% of Helicosporidium sp. loads were reduced through multiple applications of ketoconazole concentrations under in vitro trials. In vivo treatments resulted in 70% control of Helicosporidium sp. in the adults of C. salviniae that were fed ketoconazole three times over a 21 day period. Adult C. salviniae feeding and survival performances were similar when fed fronds of S. molesta inoculated with ketoconazole and water. The lowest and highest disease loads of Helicosporidium sp. were recorded when the weevils were reared at 30°C and 14°C, respectively. As expected, the highest impact and reproductive output of C. salviniae were at 30°C. The evaluations discussed in this thesis highlight the role of diseases in biological control agents, and gaps in both the pre-release and post-release monitoring that should integrate screening of diseases in these studies. Although the combined application of the antibiotic and temperature will reduce Helicosporidium sp. loads and impact, this technology is most likely only applicable where the weevils are reared in small numbers in a rearing facility and not really applicable to the field situation. It is important to release healthy agents that will cause efficient control of the target weed plant species, therefore, when introducing new biological control agents, the health status of such agents needs to be understood. Therefore, long-term field monitoring and assessment of the impact of C. salviniae on S. molesta should be conducted to track all the changes that may result due to the presence of Helicosporidium sp. This long-term monitoring and assessment will give a more informative role of Helicosporidium sp. in field populations of C. salviniae. , Thesis (PhD) -- Faculty of Science, Zoology and Entomology, 2022
- Full Text:
- Date Issued: 2022-10-14
- Authors: Mphephu, Tshililo Emmanuel
- Date: 2022-10-14
- Subjects: Salvinia molesta South Africa , Weeds Biological control , Cyrtobagous salviniae , Ketoconazole
- Language: English
- Type: Academic theses , Doctoral theses , text
- Identifier: http://hdl.handle.net/10962/365815 , vital:65792 , DOI https://doi.org/10.21504/10962/365815
- Description: The effectiveness of established biological control agents depends on biotic and abiotic interactions in the introduced range. The weevil, Cyrtobagous salviniae Calder and Sands (Coleoptera: Curculionidae), was released as a biological control against Salvinia molesta D.S. Mitchell (Salviniaceae) in South Africa in 1985. This agent has been highly successful against S. molesta and has significantly reduced the weed’s populations around the country. However, in 2007, the parasitic alga, Helicosporidium sp. (an undescribed species), was detected in field-collected C. salviniae adults in South Africa. The distribution and impacts of this disease on the weevil and its efficacy as a control agent were not known. In this thesis, the prevalence, infection load, and impact of Helicosporidium sp. on C. salviniae was determined. In 2019, adult weevils were collected from 10 sites across the Eastern Cape, KwaZulu-Natal, Limpopo, and Western Cape provinces and screened to determine the occurrence, infection load, and geographic distribution of Helicosporidium sp. Transmission mechanisms of this disease in C. salviniae were then evaluated. The possible impact of Helicosporidium sp. was assessed by comparing the feeding rates and the reproductive output of the diseased and healthy adults of C. salviniae. An attempt was then made to eliminate the disease in C. salviniae through the application of the antibiotic, ketoconazole. Further, the role of temperature on infection load in C. salviniae was also assessed. Finally, recommendations for the long-term biological control programme against S. molesta in South Africa were made. The disease covers the entire distribution range of C. salviniae in South Africa, with the disease occurrence rate ranging from 92.15% to 100% insects infected per site. Helicosporidium sp. was found to transmit vertically within the populations of C. salviniae. Infection by the Helicosporidium sp. disease reduced the reproductive output of C. salviniae as well its impact on biomass reduction of S. molesta when a diseased culture was compared to a healthy culture from the USA. 98.44 to 98.55% of Helicosporidium sp. loads were reduced through multiple applications of ketoconazole concentrations under in vitro trials. In vivo treatments resulted in 70% control of Helicosporidium sp. in the adults of C. salviniae that were fed ketoconazole three times over a 21 day period. Adult C. salviniae feeding and survival performances were similar when fed fronds of S. molesta inoculated with ketoconazole and water. The lowest and highest disease loads of Helicosporidium sp. were recorded when the weevils were reared at 30°C and 14°C, respectively. As expected, the highest impact and reproductive output of C. salviniae were at 30°C. The evaluations discussed in this thesis highlight the role of diseases in biological control agents, and gaps in both the pre-release and post-release monitoring that should integrate screening of diseases in these studies. Although the combined application of the antibiotic and temperature will reduce Helicosporidium sp. loads and impact, this technology is most likely only applicable where the weevils are reared in small numbers in a rearing facility and not really applicable to the field situation. It is important to release healthy agents that will cause efficient control of the target weed plant species, therefore, when introducing new biological control agents, the health status of such agents needs to be understood. Therefore, long-term field monitoring and assessment of the impact of C. salviniae on S. molesta should be conducted to track all the changes that may result due to the presence of Helicosporidium sp. This long-term monitoring and assessment will give a more informative role of Helicosporidium sp. in field populations of C. salviniae. , Thesis (PhD) -- Faculty of Science, Zoology and Entomology, 2022
- Full Text:
- Date Issued: 2022-10-14
The effects of elevated CO2 on feeding guild responses of biological control agents of Pontederia crassipes Mart. (Pontederiaceae)
- Authors: Paper, Matthew Keenan
- Date: 2022-04-06
- Subjects: Carbon dioxide , Pontederia crassipes , Biological pest control agents , Invasive plants Biological control , Pontederiaceae Climatic factors
- Language: English
- Type: Academic theses , Master's theses , text
- Identifier: http://hdl.handle.net/10962/455338 , vital:75422
- Description: Elevated CO2 (eCO2) and rising global temperatures have the potential to alter plant-insect interactions with important implications for plant community structure and function. Previous studies on plant-insect interactions have shown that eCO2 will affect insect feeding guilds differently, impacting negatively, positively or having very little effect. The implications of this on the global invasive plant biological control programme is largely unknown. This study investigates the response of one of the world’s most invasive aquatic plants, Pontederia ( = Eichhornia) crassipes Mart. (Pontederiaceae), to predicted eCO2 conditions of 800 ppm and how this may affect the feeding response of two biological control agents representing different feeding guilds; the leaf chewing Cornops aquaticum Brüner (Orthoptera: Acrididae) and the phloem-feeding Megamelus scutellaris Berg (Hemiptera: Delphacidae). A factorial eCO2 x feeding impact study was conducted at the Rhodes University Elevated CO2 Facility in the Eastern Cape Province of South Africa over 13 weeks in the growing season of 2019. The effect of insect herbivory by C. aquaticum and M. scutellaris at two atmospheric CO2 concentrations, representing current and future predicted concentrations (400 ppm and 800 ppm) on P. crassipes was examined through both biomass and ecophysiological measures. Assimilation rates, C:N ratio, total dry weight and relative growth rate of P. crassipes were unaffected by eCO2 conditions, and plants experienced no CO2 fertilization in eutrophic water conditions representative of South African waterways. Effects of eCO2 on insect herbivory varied depending on the feeding guild. Pontederia crassipes showed compensatory growth responses when exposed to C. aquaticum herbivory regardless of CO2 treatment, but chewing herbivory damage remained constant, and the agent maintained efficacy. Pontederia crassipes showed down-regulation of photosynthesis when exposed to M. scutellaris due to eCO2-related feeding responses by M. scutellaris increasing substantially through a significant (30%) increase in adult population density under eCO2 conditions. These results indicate that the plant-insect interactions that underpin biological control programmes for P. crassipes should remain successful under future CO2 conditions. Phloem-feeding insect damage (M. scutellaris) was significantly greater than chewing damage in this study, suggesting that invasive plant biological control programmes will need to shift focus away from the charismatic chewing insect herbivores and onto the often-neglected phloem-feeding biological control agents due to their overwhelmingly positive response to eCO2. , Thesis (MSc) -- Faculty of Science, Zoology and Entomology, 2022
- Full Text:
- Date Issued: 2022-04-06
- Authors: Paper, Matthew Keenan
- Date: 2022-04-06
- Subjects: Carbon dioxide , Pontederia crassipes , Biological pest control agents , Invasive plants Biological control , Pontederiaceae Climatic factors
- Language: English
- Type: Academic theses , Master's theses , text
- Identifier: http://hdl.handle.net/10962/455338 , vital:75422
- Description: Elevated CO2 (eCO2) and rising global temperatures have the potential to alter plant-insect interactions with important implications for plant community structure and function. Previous studies on plant-insect interactions have shown that eCO2 will affect insect feeding guilds differently, impacting negatively, positively or having very little effect. The implications of this on the global invasive plant biological control programme is largely unknown. This study investigates the response of one of the world’s most invasive aquatic plants, Pontederia ( = Eichhornia) crassipes Mart. (Pontederiaceae), to predicted eCO2 conditions of 800 ppm and how this may affect the feeding response of two biological control agents representing different feeding guilds; the leaf chewing Cornops aquaticum Brüner (Orthoptera: Acrididae) and the phloem-feeding Megamelus scutellaris Berg (Hemiptera: Delphacidae). A factorial eCO2 x feeding impact study was conducted at the Rhodes University Elevated CO2 Facility in the Eastern Cape Province of South Africa over 13 weeks in the growing season of 2019. The effect of insect herbivory by C. aquaticum and M. scutellaris at two atmospheric CO2 concentrations, representing current and future predicted concentrations (400 ppm and 800 ppm) on P. crassipes was examined through both biomass and ecophysiological measures. Assimilation rates, C:N ratio, total dry weight and relative growth rate of P. crassipes were unaffected by eCO2 conditions, and plants experienced no CO2 fertilization in eutrophic water conditions representative of South African waterways. Effects of eCO2 on insect herbivory varied depending on the feeding guild. Pontederia crassipes showed compensatory growth responses when exposed to C. aquaticum herbivory regardless of CO2 treatment, but chewing herbivory damage remained constant, and the agent maintained efficacy. Pontederia crassipes showed down-regulation of photosynthesis when exposed to M. scutellaris due to eCO2-related feeding responses by M. scutellaris increasing substantially through a significant (30%) increase in adult population density under eCO2 conditions. These results indicate that the plant-insect interactions that underpin biological control programmes for P. crassipes should remain successful under future CO2 conditions. Phloem-feeding insect damage (M. scutellaris) was significantly greater than chewing damage in this study, suggesting that invasive plant biological control programmes will need to shift focus away from the charismatic chewing insect herbivores and onto the often-neglected phloem-feeding biological control agents due to their overwhelmingly positive response to eCO2. , Thesis (MSc) -- Faculty of Science, Zoology and Entomology, 2022
- Full Text:
- Date Issued: 2022-04-06
The invasion autecology of Iris pseudacorus L. (Iridaceae) in South Africa
- Authors: Sandenbergh, Emma
- Date: 2022-04-06
- Subjects: Iris pseudacorus South Africa , Invasive plants South Africa , Aquatic weeds South Africa , Plant genetics South Africa , Freshwater ecology South Africa , Iris pseudacorus Geographical distribution , Phytogeography
- Language: English
- Type: Master's thesis , text
- Identifier: http://hdl.handle.net/10962/232272 , vital:49977
- Description: Iris pseudacorus L. (Iridaceae) is an emergent aquatic macrophyte originating from Europe, north Africa, and western Asia, and is becoming an increasingly problematic invader in South Africa. By forming dense rhizomatic mats in the absence of natural enemies, I. pseudacorus outcompetes co-occurring indigenous biota, causing serious environmental and socioeconomic challenges. Iris pseudacorus is a declared invader in South Africa, Argentina, New Zealand, the United States of America, and Canada, but little information is known regarding the species’ invasive potential, particularly in the southern hemisphere, hindering the effectiveness of control efforts. This study addresses this knowledge gap in a South African context, providing valuable insight into the invasion autecology of I. pseudacorus in South Africa. For effective management and control of I. pseudacorus in South Africa and the global south, its distribution and invasive potential must be determined, and its population genetics understood. Hence, this study aimed to map the current confirmed distribution of I. pseudacorus populations in South Africa, investigating the relative abundance of I. pseudacorus individuals in each population, and comparing their sexual reproductive outputs. Moreover, this study assessed the competitive interactions between I. pseudacorus and co-occurring native species T. capensis, and examined the genetic diversity present between and within South African I. pseudacorus populations. Through field surveys, I. pseudacorus infestations were confirmed in eight of the country’s nine provinces, with the highest number of infestations recorded in the urban hubs, and greatest population abundances reported in the warmer, wetter regions of South Africa. These surveys indicated that South African I. pseudacorus populations have enhanced their sexual reproductive output relative to native range populations, and a germination rate of ~ 83 % was determined in the laboratory. The results of a common garden competition experiment indicated that T. capensis may be a superior competitor over I. pseudacorus, but this was not supported by field observations, and may be a result of the short duration of the experiment. Using inter-simple sequence repeats (ISSRs), high genetic diversity was observed within and between populations of I. pseudacorus, indicating the employment of sexual reproductive strategies, and providing evidence for gene-flow between and within populations. Moreover, a weak negative correlation was observed between geographic distance and genetic similarity, ii indicating a largely anthropogenic spread of I. pseudacorus, and suggesting the occurrence of fewer founding events than reported in the United States. This study provides useful insight into the invasion autecology of I. pseudacorus in South Africa, contributing to the ongoing research surrounding I. pseudacorus invasions worldwide, particularly in the southern hemisphere. These results contribute to the development of appropriate adaptive and integrated management strategies to control I. pseudacorus invasions in South Africa, and should be implemented before South African I. pseudacorus infestations reach the severity observed elsewhere. , Thesis (MSc) -- Faculty of Science, Botany, 2022
- Full Text:
- Date Issued: 2022-04-06
- Authors: Sandenbergh, Emma
- Date: 2022-04-06
- Subjects: Iris pseudacorus South Africa , Invasive plants South Africa , Aquatic weeds South Africa , Plant genetics South Africa , Freshwater ecology South Africa , Iris pseudacorus Geographical distribution , Phytogeography
- Language: English
- Type: Master's thesis , text
- Identifier: http://hdl.handle.net/10962/232272 , vital:49977
- Description: Iris pseudacorus L. (Iridaceae) is an emergent aquatic macrophyte originating from Europe, north Africa, and western Asia, and is becoming an increasingly problematic invader in South Africa. By forming dense rhizomatic mats in the absence of natural enemies, I. pseudacorus outcompetes co-occurring indigenous biota, causing serious environmental and socioeconomic challenges. Iris pseudacorus is a declared invader in South Africa, Argentina, New Zealand, the United States of America, and Canada, but little information is known regarding the species’ invasive potential, particularly in the southern hemisphere, hindering the effectiveness of control efforts. This study addresses this knowledge gap in a South African context, providing valuable insight into the invasion autecology of I. pseudacorus in South Africa. For effective management and control of I. pseudacorus in South Africa and the global south, its distribution and invasive potential must be determined, and its population genetics understood. Hence, this study aimed to map the current confirmed distribution of I. pseudacorus populations in South Africa, investigating the relative abundance of I. pseudacorus individuals in each population, and comparing their sexual reproductive outputs. Moreover, this study assessed the competitive interactions between I. pseudacorus and co-occurring native species T. capensis, and examined the genetic diversity present between and within South African I. pseudacorus populations. Through field surveys, I. pseudacorus infestations were confirmed in eight of the country’s nine provinces, with the highest number of infestations recorded in the urban hubs, and greatest population abundances reported in the warmer, wetter regions of South Africa. These surveys indicated that South African I. pseudacorus populations have enhanced their sexual reproductive output relative to native range populations, and a germination rate of ~ 83 % was determined in the laboratory. The results of a common garden competition experiment indicated that T. capensis may be a superior competitor over I. pseudacorus, but this was not supported by field observations, and may be a result of the short duration of the experiment. Using inter-simple sequence repeats (ISSRs), high genetic diversity was observed within and between populations of I. pseudacorus, indicating the employment of sexual reproductive strategies, and providing evidence for gene-flow between and within populations. Moreover, a weak negative correlation was observed between geographic distance and genetic similarity, ii indicating a largely anthropogenic spread of I. pseudacorus, and suggesting the occurrence of fewer founding events than reported in the United States. This study provides useful insight into the invasion autecology of I. pseudacorus in South Africa, contributing to the ongoing research surrounding I. pseudacorus invasions worldwide, particularly in the southern hemisphere. These results contribute to the development of appropriate adaptive and integrated management strategies to control I. pseudacorus invasions in South Africa, and should be implemented before South African I. pseudacorus infestations reach the severity observed elsewhere. , Thesis (MSc) -- Faculty of Science, Botany, 2022
- Full Text:
- Date Issued: 2022-04-06
The biological control of Egeria densa Planch. (Hydrocharitaceae) in South Africa
- Authors: Smith, Rosali
- Date: 2021-10-29
- Subjects: Egeria (Plant genus) Biological control South Africa , Hydrocharitaceae Biological control South Africa , Aquatic weeds Biological control South Africa , Leafminers South Africa , Plant invasions South Africa , Resilience (Ecology) South Africa , Freshwater ecology South Africa , Hydrellia South Africa , Submerged macrophyte
- Language: English
- Type: Doctoral theses , text
- Identifier: http://hdl.handle.net/10962/191102 , vital:45060 , 10.21504/10962/191102
- Description: Over the last thirty years, biological control, the use of host-specific natural enemies, has been a huge asset in the management exotic aquatic macrophytes such as Pistia stratiotes L. (Araceae), Pontederia crassipes Mart. (Solms) (Pontederiaceae), Azolla filiculoides Lam. (Azollaceae), Salvinia molesta D.S. Mitch (Salviniaceae) and Myriophyllum aquaticum (Vell.) Verdc. (Haloragaceae), also known as the “Big Bad Five” in South Africa. Despite these successes, freshwater ecosystems in South Africa have been harder to restore to an invasive macrophyte-free space, due to chronic disturbances such eutrophication, propagule dispersal and hydrological alterations. In the Anthropocene, where human activities have profound effects on their environment, these disturbances weakens ecological resilience and drive aquatic plant invasions. Due to long periods of invasions and the presence of a new suite of exotic aquatic plant propagules, native vegetation recolonization has been slow or even absent. Instead, the release of resources, such as sunlight, nutrient and space through aquatic weed management acts as a catalyst for secondary biological invasion. New invasive aquatic weeds include submerged and rooted emergent growth types, with Egeria densa Planch. (Hydrocharitaceae) the most widely distributed submerged aquatic weed in South Africa. It can quickly form dense monoculture stands that have ecological, economic and social impacts. Because of its ability to regenerate from plant fragments with double nodes, mechanical control is inappropriate. Additionally, mechanical and chemical control not only affects E. densa but have significant non-target effects. In response to its rapid spread over the last 20 years, especially following floating invasive aquatic management, a biological control programme was initiated, and in 2018, the leaf-mining fly, Hydrellia egeriae Rodrigues (Diptera: Ephydridae) was released. This was the first release of a biological control agent against E. densa in the world, and the first agent released against a submerged aquatic weed in South Africa. This thesis comprises the subsequent step of a biological control program when permission for the release of an agent have been obtained. A brief history of macrophyte invasions in South Africa’s unique freshwater systems are given in the literature review. Contributing factors to secondary invasions within the context of ecological resilience are introduced. An argument for the benefit of biological control as nuisance control is given, especially because E. densa and its natural enemy, H. egeriae is the focus species of this thesis. The main goal after permission for the release of an agent have been obtained, is to establish and build-up field populations. Research questions in this thesis aimed to investigate factors that contribute to or negate this goal. Through laboratory and field experiments we investigated the thermal physiology of the agent, and its climatic suitability to its novel range; different release strategies on field establishment and biotic resistance through the acquisition of novel parasitoids. Considering the longevity of this biological control program, we investigated the effects of elevated CO2 on the interaction between E. densa and H. egeriae through open top chamber experiments. Laboratory thermal physiology results showed that the agent is able to survive, develop and proliferate at all E. densa sites throughout the year. This is confirmed with the establishment of the agent at two release sites, the Nahoon River in the Eastern Cape Province and the Midmar Dam in KwaZulu-Natal. Post-release surveys showed that H. egeriae requires augmentative releases to sustain field populations. Without augmentative releases, H. egeriae herbivory levels were almost negligent. However, a contributing factor to low field-populations was parasitism. The biological control agent acquired three parasitoids, which have previously been described from Hydrellia lagarosiphon Deeming (Diptera: Ephydridae), a specific herbivore to Lagarosiphon major (Ridl.) Moss (Hydrocharitaceae). These results provide information on the immediate establishment and effectiveness of the H. egeriae. Results from the elevated CO2 study suggest that E. densa will become less nutritious through a shift in leaf C/N ratio, when ambient 800ppm is bubbled into experimental growth chambers. Hydrellia egeriae feeding was affected by ambient CO2 levels and plant nutrient availability. The set levels of ambient CO2 levels used in this experiment produced dissolved inorganic carbon levels that were lower than dissolved inorganic carbon levels in E. densa invaded sites. This suggests that, submerged aquatic plant-insect interactions may be harder to predict from only laboratory experiments. Further investigations are necessary to establish system-specific characteristics i.e. dissolved inorganic carbon and target plant nutritional quality. The biological control of E. densa in South Africa is still in its infancy. This study presents results from post-release surveys up until two years after the agent was released. From this study, Hydrellia egeriae exhibits the potential to be an effective biological control agent, but release strategies should be adapted to sustain field populations and to limit field parasitism effects. Continued post-release surveys will provide a more comprehensive idea of the seasonal fluctuations of field-populations and parasitism. Surveys at multiple sites will provide information on potential site specific characteristics that contribute to or negate biological effort. Considering the high nutrient status of South African freshwater systems, a more holistic approach to E. densa management is necessary. This will require the strengthening of ecological resilience to prevent systems from shifting into an alternate invasive stable state. In addition, aquatic weed management needs to be addressed by a resilient social network, which ultimately calls for the strengthening of socio-ecological resilience. , Thesis (PhD) -- Faculty of Science, Zoology and Entomology, 2021
- Full Text:
- Date Issued: 2021-10-29
- Authors: Smith, Rosali
- Date: 2021-10-29
- Subjects: Egeria (Plant genus) Biological control South Africa , Hydrocharitaceae Biological control South Africa , Aquatic weeds Biological control South Africa , Leafminers South Africa , Plant invasions South Africa , Resilience (Ecology) South Africa , Freshwater ecology South Africa , Hydrellia South Africa , Submerged macrophyte
- Language: English
- Type: Doctoral theses , text
- Identifier: http://hdl.handle.net/10962/191102 , vital:45060 , 10.21504/10962/191102
- Description: Over the last thirty years, biological control, the use of host-specific natural enemies, has been a huge asset in the management exotic aquatic macrophytes such as Pistia stratiotes L. (Araceae), Pontederia crassipes Mart. (Solms) (Pontederiaceae), Azolla filiculoides Lam. (Azollaceae), Salvinia molesta D.S. Mitch (Salviniaceae) and Myriophyllum aquaticum (Vell.) Verdc. (Haloragaceae), also known as the “Big Bad Five” in South Africa. Despite these successes, freshwater ecosystems in South Africa have been harder to restore to an invasive macrophyte-free space, due to chronic disturbances such eutrophication, propagule dispersal and hydrological alterations. In the Anthropocene, where human activities have profound effects on their environment, these disturbances weakens ecological resilience and drive aquatic plant invasions. Due to long periods of invasions and the presence of a new suite of exotic aquatic plant propagules, native vegetation recolonization has been slow or even absent. Instead, the release of resources, such as sunlight, nutrient and space through aquatic weed management acts as a catalyst for secondary biological invasion. New invasive aquatic weeds include submerged and rooted emergent growth types, with Egeria densa Planch. (Hydrocharitaceae) the most widely distributed submerged aquatic weed in South Africa. It can quickly form dense monoculture stands that have ecological, economic and social impacts. Because of its ability to regenerate from plant fragments with double nodes, mechanical control is inappropriate. Additionally, mechanical and chemical control not only affects E. densa but have significant non-target effects. In response to its rapid spread over the last 20 years, especially following floating invasive aquatic management, a biological control programme was initiated, and in 2018, the leaf-mining fly, Hydrellia egeriae Rodrigues (Diptera: Ephydridae) was released. This was the first release of a biological control agent against E. densa in the world, and the first agent released against a submerged aquatic weed in South Africa. This thesis comprises the subsequent step of a biological control program when permission for the release of an agent have been obtained. A brief history of macrophyte invasions in South Africa’s unique freshwater systems are given in the literature review. Contributing factors to secondary invasions within the context of ecological resilience are introduced. An argument for the benefit of biological control as nuisance control is given, especially because E. densa and its natural enemy, H. egeriae is the focus species of this thesis. The main goal after permission for the release of an agent have been obtained, is to establish and build-up field populations. Research questions in this thesis aimed to investigate factors that contribute to or negate this goal. Through laboratory and field experiments we investigated the thermal physiology of the agent, and its climatic suitability to its novel range; different release strategies on field establishment and biotic resistance through the acquisition of novel parasitoids. Considering the longevity of this biological control program, we investigated the effects of elevated CO2 on the interaction between E. densa and H. egeriae through open top chamber experiments. Laboratory thermal physiology results showed that the agent is able to survive, develop and proliferate at all E. densa sites throughout the year. This is confirmed with the establishment of the agent at two release sites, the Nahoon River in the Eastern Cape Province and the Midmar Dam in KwaZulu-Natal. Post-release surveys showed that H. egeriae requires augmentative releases to sustain field populations. Without augmentative releases, H. egeriae herbivory levels were almost negligent. However, a contributing factor to low field-populations was parasitism. The biological control agent acquired three parasitoids, which have previously been described from Hydrellia lagarosiphon Deeming (Diptera: Ephydridae), a specific herbivore to Lagarosiphon major (Ridl.) Moss (Hydrocharitaceae). These results provide information on the immediate establishment and effectiveness of the H. egeriae. Results from the elevated CO2 study suggest that E. densa will become less nutritious through a shift in leaf C/N ratio, when ambient 800ppm is bubbled into experimental growth chambers. Hydrellia egeriae feeding was affected by ambient CO2 levels and plant nutrient availability. The set levels of ambient CO2 levels used in this experiment produced dissolved inorganic carbon levels that were lower than dissolved inorganic carbon levels in E. densa invaded sites. This suggests that, submerged aquatic plant-insect interactions may be harder to predict from only laboratory experiments. Further investigations are necessary to establish system-specific characteristics i.e. dissolved inorganic carbon and target plant nutritional quality. The biological control of E. densa in South Africa is still in its infancy. This study presents results from post-release surveys up until two years after the agent was released. From this study, Hydrellia egeriae exhibits the potential to be an effective biological control agent, but release strategies should be adapted to sustain field populations and to limit field parasitism effects. Continued post-release surveys will provide a more comprehensive idea of the seasonal fluctuations of field-populations and parasitism. Surveys at multiple sites will provide information on potential site specific characteristics that contribute to or negate biological effort. Considering the high nutrient status of South African freshwater systems, a more holistic approach to E. densa management is necessary. This will require the strengthening of ecological resilience to prevent systems from shifting into an alternate invasive stable state. In addition, aquatic weed management needs to be addressed by a resilient social network, which ultimately calls for the strengthening of socio-ecological resilience. , Thesis (PhD) -- Faculty of Science, Zoology and Entomology, 2021
- Full Text:
- Date Issued: 2021-10-29
The tuber-feeding weevil Listronotus frontalis as a candidate biological control agent for the invasive semi-aquatic plant Sagittaria platyphylla within South Africa
- Authors: Rogers, Daniel James
- Date: 2021-10
- Subjects: Listronotus South Africa , Arrowhead (Plants) South Africa , Arrowhead (Plants) Biological control South Africa , Invasive plants Biological control South Africa , Insects as biological pest control agents South Africa , Plant populations South Africa
- Language: English
- Type: Master's theses , text
- Identifier: http://hdl.handle.net/10962/190731 , vital:45023
- Description: Sagittaria platyphylla (Engelm.) J.G.Sm. (Alismataceae) is an invasive, aquatic macrophyte originating in the southern United States of America. In South Africa, the plant was first detected in Krantzkloof Nature Reserve, KwaZulu-Natal Province in 2008, and due to its known impact in other countries, it was listed as a Category 1a invader species under the National Environmental Management: Biodiversity Act 2004 (NEM:BA). This invasive plant has proved difficult to manage due to its varied growth forms and reproductive strategies, such as prolific seed and below ground tuber production. Due to the limitations of conventional control mechanisms, biological control is currently being considered as a potential control option. The tuber feeding weevil Listronotus frontalis LeConte (Coleoptera: Curculionidae) has been identified as a candidate biological control agent for this invasive species. The aims of this study were twofold; to firstly determine the importance of tubers to S. platyphylla populations growing in South Africa; and secondly, to determine the biology and suitability of L. frontalis, a tuber feeder, as a candidate biological control agent. Surveys of S. platyphylla populations in South Africa showed that tubers were found in all sampled sites, except for Krantzkloof Nature reserve in KwaZulu-Natal Province. The highest number of tubers was 97.75 ± 10.62 (SE) m-2 recorded at Jonkershoek in the Western Cape Province. Monthly sampling from two sites in the Eastern Cape Province, the Makana Botanical Gardens and Maden Dam showed that neither season nor water depth affected tuber production. However, the mean number of tubers as well as mass of tubers sampled, were consistently higher (F(1,179) = 20.9542, P < 0.0001) and heavier (F(1, 857) = 585.7293, P < 0.0001) at the Botanical Gardens than at Maden Dam, respectively. The study showed that tubers are an important life stage of S. platyphylla populations and may vary in size and abundance between and within sites. The tuber feeding weevil was shown to develop from egg to ovipositing adult within just over 40 days. Females were recorded to lay up to 48 eggs within a period of one week. Impact studies showed that adult feeding led to a reduction in all but one of the 11 measured plant growth and developmental measurements, including a reduction in the mean mass of the above-ground plant material (F(2,2743) = 12.05, P = 0.002) as well as a reduction in size and abundance of tubers (F(2,58.47) = 9.756, P = 0.0006) and stolons(F(14.943) = 8.7577, P = 0.003). These results are encouraging and suggest that if the insect is released in South Africa, it may prove to be a valuable biocontrol agent. It is concluded that, until suitable biological control options become available in South Africa, the chemical and mechanical control measures currently implemented should continue, however, controlling tubers should be considered during the planning and implementation of these strategies. , Thesis (MSc) -- Faculty of Science, Zoology and Entomology, 2021
- Full Text:
- Date Issued: 2021-10
- Authors: Rogers, Daniel James
- Date: 2021-10
- Subjects: Listronotus South Africa , Arrowhead (Plants) South Africa , Arrowhead (Plants) Biological control South Africa , Invasive plants Biological control South Africa , Insects as biological pest control agents South Africa , Plant populations South Africa
- Language: English
- Type: Master's theses , text
- Identifier: http://hdl.handle.net/10962/190731 , vital:45023
- Description: Sagittaria platyphylla (Engelm.) J.G.Sm. (Alismataceae) is an invasive, aquatic macrophyte originating in the southern United States of America. In South Africa, the plant was first detected in Krantzkloof Nature Reserve, KwaZulu-Natal Province in 2008, and due to its known impact in other countries, it was listed as a Category 1a invader species under the National Environmental Management: Biodiversity Act 2004 (NEM:BA). This invasive plant has proved difficult to manage due to its varied growth forms and reproductive strategies, such as prolific seed and below ground tuber production. Due to the limitations of conventional control mechanisms, biological control is currently being considered as a potential control option. The tuber feeding weevil Listronotus frontalis LeConte (Coleoptera: Curculionidae) has been identified as a candidate biological control agent for this invasive species. The aims of this study were twofold; to firstly determine the importance of tubers to S. platyphylla populations growing in South Africa; and secondly, to determine the biology and suitability of L. frontalis, a tuber feeder, as a candidate biological control agent. Surveys of S. platyphylla populations in South Africa showed that tubers were found in all sampled sites, except for Krantzkloof Nature reserve in KwaZulu-Natal Province. The highest number of tubers was 97.75 ± 10.62 (SE) m-2 recorded at Jonkershoek in the Western Cape Province. Monthly sampling from two sites in the Eastern Cape Province, the Makana Botanical Gardens and Maden Dam showed that neither season nor water depth affected tuber production. However, the mean number of tubers as well as mass of tubers sampled, were consistently higher (F(1,179) = 20.9542, P < 0.0001) and heavier (F(1, 857) = 585.7293, P < 0.0001) at the Botanical Gardens than at Maden Dam, respectively. The study showed that tubers are an important life stage of S. platyphylla populations and may vary in size and abundance between and within sites. The tuber feeding weevil was shown to develop from egg to ovipositing adult within just over 40 days. Females were recorded to lay up to 48 eggs within a period of one week. Impact studies showed that adult feeding led to a reduction in all but one of the 11 measured plant growth and developmental measurements, including a reduction in the mean mass of the above-ground plant material (F(2,2743) = 12.05, P = 0.002) as well as a reduction in size and abundance of tubers (F(2,58.47) = 9.756, P = 0.0006) and stolons(F(14.943) = 8.7577, P = 0.003). These results are encouraging and suggest that if the insect is released in South Africa, it may prove to be a valuable biocontrol agent. It is concluded that, until suitable biological control options become available in South Africa, the chemical and mechanical control measures currently implemented should continue, however, controlling tubers should be considered during the planning and implementation of these strategies. , Thesis (MSc) -- Faculty of Science, Zoology and Entomology, 2021
- Full Text:
- Date Issued: 2021-10
The invasion ecology of Pontederia cordata L. (Pontederiaceae) in South Africa
- Authors: Wansell, Sage Nora-Lee
- Date: 2021
- Subjects: Plant invsions -- South AFrica , Invasive plants -- Ecology -- South Africa , Pontederiaceae -- South AFrica
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/172433 , vital:42200
- Description: Pontederia cordata L. (Pontederiaceae) is a tristylous invasive macrophyte – originating from North and South America – that has caused detrimental environmental, agricultural and socio-economic impacts in South Africa (SA). This novel study investigates the invasive ecology of P. cordata in SA by determining population genetics, pollination ecology and floral traits. Preliminary field surveys suggest that only one of three tristylous forms of P. cordata is invading SA and no seeds have been observed in any invasive populations. This study therefore determined the population genetics, mode of spread of P. cordata in SA and possible reasons for the lack of seed production, as well as providing suggestions for future control and management strategies. Inter Simple Sequence Repeats of leaf samples from invasive populations in SA and the native range of the United States of America (USA) were performed to determine the population genetics of P. cordata. The clarification of population structure of an alien invasive plant can provide insight into founder effects, introduction events and modes of spread and is important for the development of management plans such as biological control. Results from the genetic analyses indicated that P. cordata populations have low genetic diversity within and amongst invasive populations in comparison to native populations. This suggests that high gene flow and sexual reproduction is not present in invasive populations, and that only a single or very few introductory events have occurred in SA. Furthermore, invasive P. cordata populations shared the highest genetic similarity with native samples from Belle Haven, Virginia, USA, and thus further sampling and future genetic surveys should be conducted in this area to identify source populations to survey for potential biological control agents. Following these findings, I investigated whether sexual reproduction and seed production is absent from invasive P. cordata populations in SA as speculated. Floral traits from populations throughout all the invaded provinces were measured and, along with pollen grain measurements, it was determined that only short-morphed plants are present in SA. It was speculated that the absence of native pollinators in the invasive range may be responsible for the absence of sexual reproduction. However, a pollination study confirmed the presence of generalist insect pollinators. Thereafter, artificial pollination experiments on 8 865 flowers were conducted to determine whether an incompatibility system was present which prevented seed production. No seeds were produced and it was concluded that illegitimate pollination of the short-morphed plants prevented seed production and rhizomes are responsible for the invasion of P. cordata throughout SA. The implications of these findings and possible management strategies such as biological control is discussed in Chapter 4. These findings suggest that control programmes should target the plants rhizomes to prevent and reduce spread. Preventing the introduction of medium- and long-morphed plants into SA is crucial to prevent P. cordata from producing seeds and intensifying invasion further through both asexual and sexual spread.
- Full Text:
- Date Issued: 2021
- Authors: Wansell, Sage Nora-Lee
- Date: 2021
- Subjects: Plant invsions -- South AFrica , Invasive plants -- Ecology -- South Africa , Pontederiaceae -- South AFrica
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/172433 , vital:42200
- Description: Pontederia cordata L. (Pontederiaceae) is a tristylous invasive macrophyte – originating from North and South America – that has caused detrimental environmental, agricultural and socio-economic impacts in South Africa (SA). This novel study investigates the invasive ecology of P. cordata in SA by determining population genetics, pollination ecology and floral traits. Preliminary field surveys suggest that only one of three tristylous forms of P. cordata is invading SA and no seeds have been observed in any invasive populations. This study therefore determined the population genetics, mode of spread of P. cordata in SA and possible reasons for the lack of seed production, as well as providing suggestions for future control and management strategies. Inter Simple Sequence Repeats of leaf samples from invasive populations in SA and the native range of the United States of America (USA) were performed to determine the population genetics of P. cordata. The clarification of population structure of an alien invasive plant can provide insight into founder effects, introduction events and modes of spread and is important for the development of management plans such as biological control. Results from the genetic analyses indicated that P. cordata populations have low genetic diversity within and amongst invasive populations in comparison to native populations. This suggests that high gene flow and sexual reproduction is not present in invasive populations, and that only a single or very few introductory events have occurred in SA. Furthermore, invasive P. cordata populations shared the highest genetic similarity with native samples from Belle Haven, Virginia, USA, and thus further sampling and future genetic surveys should be conducted in this area to identify source populations to survey for potential biological control agents. Following these findings, I investigated whether sexual reproduction and seed production is absent from invasive P. cordata populations in SA as speculated. Floral traits from populations throughout all the invaded provinces were measured and, along with pollen grain measurements, it was determined that only short-morphed plants are present in SA. It was speculated that the absence of native pollinators in the invasive range may be responsible for the absence of sexual reproduction. However, a pollination study confirmed the presence of generalist insect pollinators. Thereafter, artificial pollination experiments on 8 865 flowers were conducted to determine whether an incompatibility system was present which prevented seed production. No seeds were produced and it was concluded that illegitimate pollination of the short-morphed plants prevented seed production and rhizomes are responsible for the invasion of P. cordata throughout SA. The implications of these findings and possible management strategies such as biological control is discussed in Chapter 4. These findings suggest that control programmes should target the plants rhizomes to prevent and reduce spread. Preventing the introduction of medium- and long-morphed plants into SA is crucial to prevent P. cordata from producing seeds and intensifying invasion further through both asexual and sexual spread.
- Full Text:
- Date Issued: 2021
Initiating biological control for Nymphaea mexicana zuccarini (Nymphaeaceae) in South Africa
- Authors: Reid, Megan Kim
- Date: 2020
- Subjects: Nymphaea mexicana zuccarini -- Biological control -- South Africa , Nymphaeaceae -- Biological control -- South Africa , Invasive plants -- Biological control -- South Africa
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/144510 , vital:38352
- Description: Nymphaea mexicana Zuccarini (Nymphaeaceae) is an aquatic plant originating from south-eastern USA that is becoming increasingly invasive in South Africa as other invasive aquatic plants are being managed successfully through biological control. Mechanical and chemical control of aquatic weeds is expensive, damaging to the environment, and only effective in the short term, so biological control is more desirable as a management strategy for N. mexicana. The biological control of invasive alien plants requires that agents are host specific so that non-target risks are mitigated. For success to be achieved, it is important to ensure that the genetic structure of invasive populations is clarified so that agents can be collected from populations in the native range that match genetically to populations in the invasive range. This is especially important in cases where the morphology of invasive alien plants does not reflect genetic differences between populations. A previous study of the genetic structure of the invasive populations of N. mexicana in South Africa suggests the presence of hybrid forms of the plant in South Africa, with only one of these populations matching with samples from the native range. However, the study only used samples from two sites in the native range using amplified fragment length polymorphisms (AFLPs), so it was necessary to conduct further genetic analyses using samples from more sites in the native range. Hence, the first aim of this study was to develop a better understanding of the genetic structure of N. mexicana populations in the native and invaded range. Genetic samples were collected from sites in the native range during field surveys for potential biological control agents, and inter-simple sequence repeats (ISSRs) were used to compare the genetic structure of invasive and native populations of N. mexicana in South Africa. The results from these analyses suggest that seven of the 14 investigated invasive populations of N. mexicana in South Africa are genetically similar to populations in the native range, while the remaining seven populations are likely to be hybrid forms of the plant. This knowledge will be useful to target populations for biological control and highlights the need for further genetic analyses to determine the parentage of these hybrids so that biological control efforts are more likely to be successful. The initiation of a biological control programme requires that a series of steps are taken in order to maximise the likelihood that this form of intervention will be successful. The first few steps include: identification of the target weed and its genetic structure; exploration in the native range for potential biological control agents; and prioritisation of these agents based on factors such as climatic and genetic compatibility, feeding damage, abundance, and likely host range. Hence, the second aim of this study was to conduct surveys for potential biological control agents in the native range of N. mexicana, and to prioritise these agents. Field surveys were conducted between August and October in 2018 at 17 sites in Florida, Louisiana, and Texas, USA. Sites were selected based on climatic similarity of native sites compared to invasive sites by use of MaxEnt modelling. Native N. mexicana plants were searched for natural enemies, and these were prioritised based on feeding damage, abundance, incidence, and observations of field host range. Two species were prioritised: Bagous americanus LeConte (Coleoptera: Curculionidae) and Megamelus toddi Beamer (Hemiptera: Delphacidae). These species will be imported into quarantine facilities at Rhodes University for host specificity tests to be conducted. Understanding the factors that contribute to the successful establishment of biological control agents is important to improve the efficiency and reduce the costs incurred during the initiation of biological control programmes. Acquiring knowledge of the factors that predict the efficacy of biological control agents is similarly important, and these factors are discussed in the last chapter of this study. The challenges of the biological control of hybrids are also considered, and recommendations are made for the control of N. mexicana and other plants in South Africa.
- Full Text:
- Date Issued: 2020
- Authors: Reid, Megan Kim
- Date: 2020
- Subjects: Nymphaea mexicana zuccarini -- Biological control -- South Africa , Nymphaeaceae -- Biological control -- South Africa , Invasive plants -- Biological control -- South Africa
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/144510 , vital:38352
- Description: Nymphaea mexicana Zuccarini (Nymphaeaceae) is an aquatic plant originating from south-eastern USA that is becoming increasingly invasive in South Africa as other invasive aquatic plants are being managed successfully through biological control. Mechanical and chemical control of aquatic weeds is expensive, damaging to the environment, and only effective in the short term, so biological control is more desirable as a management strategy for N. mexicana. The biological control of invasive alien plants requires that agents are host specific so that non-target risks are mitigated. For success to be achieved, it is important to ensure that the genetic structure of invasive populations is clarified so that agents can be collected from populations in the native range that match genetically to populations in the invasive range. This is especially important in cases where the morphology of invasive alien plants does not reflect genetic differences between populations. A previous study of the genetic structure of the invasive populations of N. mexicana in South Africa suggests the presence of hybrid forms of the plant in South Africa, with only one of these populations matching with samples from the native range. However, the study only used samples from two sites in the native range using amplified fragment length polymorphisms (AFLPs), so it was necessary to conduct further genetic analyses using samples from more sites in the native range. Hence, the first aim of this study was to develop a better understanding of the genetic structure of N. mexicana populations in the native and invaded range. Genetic samples were collected from sites in the native range during field surveys for potential biological control agents, and inter-simple sequence repeats (ISSRs) were used to compare the genetic structure of invasive and native populations of N. mexicana in South Africa. The results from these analyses suggest that seven of the 14 investigated invasive populations of N. mexicana in South Africa are genetically similar to populations in the native range, while the remaining seven populations are likely to be hybrid forms of the plant. This knowledge will be useful to target populations for biological control and highlights the need for further genetic analyses to determine the parentage of these hybrids so that biological control efforts are more likely to be successful. The initiation of a biological control programme requires that a series of steps are taken in order to maximise the likelihood that this form of intervention will be successful. The first few steps include: identification of the target weed and its genetic structure; exploration in the native range for potential biological control agents; and prioritisation of these agents based on factors such as climatic and genetic compatibility, feeding damage, abundance, and likely host range. Hence, the second aim of this study was to conduct surveys for potential biological control agents in the native range of N. mexicana, and to prioritise these agents. Field surveys were conducted between August and October in 2018 at 17 sites in Florida, Louisiana, and Texas, USA. Sites were selected based on climatic similarity of native sites compared to invasive sites by use of MaxEnt modelling. Native N. mexicana plants were searched for natural enemies, and these were prioritised based on feeding damage, abundance, incidence, and observations of field host range. Two species were prioritised: Bagous americanus LeConte (Coleoptera: Curculionidae) and Megamelus toddi Beamer (Hemiptera: Delphacidae). These species will be imported into quarantine facilities at Rhodes University for host specificity tests to be conducted. Understanding the factors that contribute to the successful establishment of biological control agents is important to improve the efficiency and reduce the costs incurred during the initiation of biological control programmes. Acquiring knowledge of the factors that predict the efficacy of biological control agents is similarly important, and these factors are discussed in the last chapter of this study. The challenges of the biological control of hybrids are also considered, and recommendations are made for the control of N. mexicana and other plants in South Africa.
- Full Text:
- Date Issued: 2020
Managing the invasive aquatic plant Sagittaria platyphylla (Engelm.) J.G. Sm(Alismataceae): problems and prospects
- Ndlovu, Mpilonhle Sinothando
- Authors: Ndlovu, Mpilonhle Sinothando
- Date: 2020
- Subjects: Aquatic weeds -- Biological control -- South Africa , Sagittaria latifolia -- Biological control -- South Africa , Noxious weeds -- Biological control -- South Africa , Invasive plants -- Biological control -- South Africa , Listronotus , Insects as biological pest control agents
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/167121 , vital:41439
- Description: Sagittaria platyphylla (Engelm.) J.G.Sm. (Alismataceae), commonly known as Delta arrowhead, is an invasive aquatic macrophyte native to southern United States of America (USA) that has become a serious weed in freshwater systems in South Africa, New Zealand, Australia, and recently China. In South Africa, the plant was first detected in Krantzkloof Nature Reserve, KwaZulu-Natal Province in 2008, and due to its known impact in other countries, it was listed as a Category 1a invader species under the National Environmental Management: Biodiversity Act 2004 (NEM: BA). This listing required mechanical and chemical control methods to be implemented by the South African National Biodiversity Institute’s (SANBI), Invasive Species Programme (ISP), with the aim of eradicating the weed. Despite the eradication efforts, by 2016, the weed was recognized as one of the country’s top 10 worst and fastest spreading invasive alien plants. Since its introduction in 2008, the plant has spread both within and between sites in South Africa, increasing from one site in 2008 to 72 sites by 2019. Once introduced into lotic systems, the plant spread rapidly downstream, in some cases up to 120km within six years, with an average of 10 km per year. Extirpation over the last ten years was only possible at a limited number of sites. Under the current management approach, the invasion is foreseen to spread to new sites within a 5 km radius of the current populations. Due to the failure of conventional control mechanisms, biological control is currently being considered as a potential control option. Four potential biological control agents are under investigation, but none have been released. Amongst them is the fruit and flower feeding weevil Listronotus appendiculatus Bohm. (Coleoptera: Curculionidae) which showed most potential as a suitable biological control agent. This study demonstrated that L. appendiculatus herbivory negatively influenced the overall fitness of S. platyphylla by reducing the plant’s growth rate and above ground biomass. Listronotus appendiculatus herbivory also reduced the plant’s size and the potential to kill adult plants. Most importantly, L. appendiculatus larval feeding damage significantly reduce viable-germinating seeds, the weed’s primary dispersal mechanism. Therefore, a biological control programme is advised to be integrated within the current management plan.
- Full Text:
- Date Issued: 2020
- Authors: Ndlovu, Mpilonhle Sinothando
- Date: 2020
- Subjects: Aquatic weeds -- Biological control -- South Africa , Sagittaria latifolia -- Biological control -- South Africa , Noxious weeds -- Biological control -- South Africa , Invasive plants -- Biological control -- South Africa , Listronotus , Insects as biological pest control agents
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/167121 , vital:41439
- Description: Sagittaria platyphylla (Engelm.) J.G.Sm. (Alismataceae), commonly known as Delta arrowhead, is an invasive aquatic macrophyte native to southern United States of America (USA) that has become a serious weed in freshwater systems in South Africa, New Zealand, Australia, and recently China. In South Africa, the plant was first detected in Krantzkloof Nature Reserve, KwaZulu-Natal Province in 2008, and due to its known impact in other countries, it was listed as a Category 1a invader species under the National Environmental Management: Biodiversity Act 2004 (NEM: BA). This listing required mechanical and chemical control methods to be implemented by the South African National Biodiversity Institute’s (SANBI), Invasive Species Programme (ISP), with the aim of eradicating the weed. Despite the eradication efforts, by 2016, the weed was recognized as one of the country’s top 10 worst and fastest spreading invasive alien plants. Since its introduction in 2008, the plant has spread both within and between sites in South Africa, increasing from one site in 2008 to 72 sites by 2019. Once introduced into lotic systems, the plant spread rapidly downstream, in some cases up to 120km within six years, with an average of 10 km per year. Extirpation over the last ten years was only possible at a limited number of sites. Under the current management approach, the invasion is foreseen to spread to new sites within a 5 km radius of the current populations. Due to the failure of conventional control mechanisms, biological control is currently being considered as a potential control option. Four potential biological control agents are under investigation, but none have been released. Amongst them is the fruit and flower feeding weevil Listronotus appendiculatus Bohm. (Coleoptera: Curculionidae) which showed most potential as a suitable biological control agent. This study demonstrated that L. appendiculatus herbivory negatively influenced the overall fitness of S. platyphylla by reducing the plant’s growth rate and above ground biomass. Listronotus appendiculatus herbivory also reduced the plant’s size and the potential to kill adult plants. Most importantly, L. appendiculatus larval feeding damage significantly reduce viable-germinating seeds, the weed’s primary dispersal mechanism. Therefore, a biological control programme is advised to be integrated within the current management plan.
- Full Text:
- Date Issued: 2020
Post release evaluation of the distribution and efficacy of Eccritotarsus catarinensis and Eccritotarsus eichhorniae on Pontederia crassipes in South Africa
- Authors: Maseko, Zolile
- Date: 2020
- Subjects: Water hyacinth -- Biological control -- South Africa , Weeds -- Biological control -- South Africa , Miridae -- South Africa , Insects as biological pest control agents -- South Africa
- Language: English
- Type: text , Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/143046 , vital:38196
- Description: Biological control involves the release of new species into the environment and therefore, needs to be carefully monitored through post-release assessments which have been largely neglected in the science. Post-release evaluations of biological control programmes reveal whether the control agent has established and if it impacts weed demography, while cost-benefit analyses require a different set of data that show the magnitude on return on investment. The biological control effort on Pontederia crassipes in South Africa uses, amongst others, two species of mirid, Eccritotarsus catarinensis and E. eichhorniae. Initially, they were released as a single species, but were recently divided using molecular techniques. Eccritotarsus catarinensis was released in 1999, and E. eichhorniae in 2007. After many releases over two decades, there was need to assess where each species was established in the country. Molecular techniques proved to be valuable in identifying the two species as they are morphologically indistinguishable in the field. Therefore, molecular techniques should be routinely used for screening biocontrol agents, whether new or as re-introductions. Annual surveys of the mirid release sites around South Africa were undertaken between 2016 and 2019. At each site both insect and plant parameters were measured. Only E. catarinensis is established in the field in South Africa despite the multiple releases of E. eichhorniae at over 70 sites across the country, and E. catarinensis has established at only 22 of the 45 release sites accessed during this study. This thesis tested climate, interaction with other agents already on P. crassipes, and direct competition between the two mirid species as reasons for the lack of establishment of E. eichhorniae. The results of the country-wide surveys showed that climate and water trophic status were the major determinants in the establishment of E. catarinensis. Most of the establishment was recorded in the warmer regions of the country, however, a few populations of the mirid also established in cooler areas, thus demonstrating a degree of thermal plasticity, and possible microclimates as the mirids persisted at sites shaded by riparian vegetation. Stochastic events such as active herbicide campaigns, winter frosts, droughts and floods were responsible for the absence of the mirid at some sites. At some of the eutrophic sites, despite the abundance of E. catarinensis, plants still proliferated as the water trophic status facilitated plant growth, thus, plants were able to compensate for the damage inflicted by the mirid. A more intensive, monthly, post-release evaluation was conducted on the Kubusi River, Eastern Cape Province between 2016 and 2019. This is regarded as one of the cooler water hyacinth sites. Populations of biological control agents at this site fluctuated seasonally. At this site, cold winters caused frosting of the leaves of P. crassipes with the exception of plants growing under overhanging vegetation that provided a refuge for the mirid. But, cool temperatures in the winter months (May to August) severely reduced the populations of E. catarinensis that required a long recovery phase in spring. The consequence of this was that the plants grew unchecked from the onset of the growing season forming dense mats. Of the four agents at the Kubusi River site, Eccritotarsus catarinensis recovered slowest after winter, with lag phases ranging from two months to several months of the three-year period. The release of a suite of agents has implications on the agents themselves, where interactions between the agents can be important. Interactions between pairs and even multiple agents can have implications for biocontrol, where agents are either complimentary or interfere with each other. In this case, because E. catarinensis recovered the slowest of the four agents at the site, plants were of a poor quality by mid-summer resulting in low mirid populations. Competition in weed biological control could be expected to be strongest between pairs of agents that share the same niche, and this could be the reason why E. eichhorniae failed to establish at sites where E. catarinensis had already been established for several years. When the two mirids were combined in manipulated trials in a polytunnel, populations were lower compared to when the two mirids occurred separately. Under warm conditions, it is likely that E. eichhorniae would be the superior agent compared to E. catarinensis. The evaluations discussed in this thesis highlighted gaps in agent release methodology in multispecies settings, as well as the need for strategic augmentation pre- and post-winter. It is important to release agents that will complement each other rather than compete, therefore, when releasing agents in a multispecies setting, niche differentiation needs to be considered. Here it is concluded that the best practice for dealing with the mirids is that they should be released individually, and at sites that have no other biological control agents in order to ultimately assess their efficacy. Landscape level, long-term monitoring of biological control programmes shows the impact of the control programme at a broader scale and, are far more informative than short-term studies and at fewer sites. Long-term post-release evaluations should be mandatory in biological control programmes. Furthermore, these assessments will help develop new strategies or improve on existing ones, thus achieve greater success in control.
- Full Text:
- Date Issued: 2020
- Authors: Maseko, Zolile
- Date: 2020
- Subjects: Water hyacinth -- Biological control -- South Africa , Weeds -- Biological control -- South Africa , Miridae -- South Africa , Insects as biological pest control agents -- South Africa
- Language: English
- Type: text , Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/143046 , vital:38196
- Description: Biological control involves the release of new species into the environment and therefore, needs to be carefully monitored through post-release assessments which have been largely neglected in the science. Post-release evaluations of biological control programmes reveal whether the control agent has established and if it impacts weed demography, while cost-benefit analyses require a different set of data that show the magnitude on return on investment. The biological control effort on Pontederia crassipes in South Africa uses, amongst others, two species of mirid, Eccritotarsus catarinensis and E. eichhorniae. Initially, they were released as a single species, but were recently divided using molecular techniques. Eccritotarsus catarinensis was released in 1999, and E. eichhorniae in 2007. After many releases over two decades, there was need to assess where each species was established in the country. Molecular techniques proved to be valuable in identifying the two species as they are morphologically indistinguishable in the field. Therefore, molecular techniques should be routinely used for screening biocontrol agents, whether new or as re-introductions. Annual surveys of the mirid release sites around South Africa were undertaken between 2016 and 2019. At each site both insect and plant parameters were measured. Only E. catarinensis is established in the field in South Africa despite the multiple releases of E. eichhorniae at over 70 sites across the country, and E. catarinensis has established at only 22 of the 45 release sites accessed during this study. This thesis tested climate, interaction with other agents already on P. crassipes, and direct competition between the two mirid species as reasons for the lack of establishment of E. eichhorniae. The results of the country-wide surveys showed that climate and water trophic status were the major determinants in the establishment of E. catarinensis. Most of the establishment was recorded in the warmer regions of the country, however, a few populations of the mirid also established in cooler areas, thus demonstrating a degree of thermal plasticity, and possible microclimates as the mirids persisted at sites shaded by riparian vegetation. Stochastic events such as active herbicide campaigns, winter frosts, droughts and floods were responsible for the absence of the mirid at some sites. At some of the eutrophic sites, despite the abundance of E. catarinensis, plants still proliferated as the water trophic status facilitated plant growth, thus, plants were able to compensate for the damage inflicted by the mirid. A more intensive, monthly, post-release evaluation was conducted on the Kubusi River, Eastern Cape Province between 2016 and 2019. This is regarded as one of the cooler water hyacinth sites. Populations of biological control agents at this site fluctuated seasonally. At this site, cold winters caused frosting of the leaves of P. crassipes with the exception of plants growing under overhanging vegetation that provided a refuge for the mirid. But, cool temperatures in the winter months (May to August) severely reduced the populations of E. catarinensis that required a long recovery phase in spring. The consequence of this was that the plants grew unchecked from the onset of the growing season forming dense mats. Of the four agents at the Kubusi River site, Eccritotarsus catarinensis recovered slowest after winter, with lag phases ranging from two months to several months of the three-year period. The release of a suite of agents has implications on the agents themselves, where interactions between the agents can be important. Interactions between pairs and even multiple agents can have implications for biocontrol, where agents are either complimentary or interfere with each other. In this case, because E. catarinensis recovered the slowest of the four agents at the site, plants were of a poor quality by mid-summer resulting in low mirid populations. Competition in weed biological control could be expected to be strongest between pairs of agents that share the same niche, and this could be the reason why E. eichhorniae failed to establish at sites where E. catarinensis had already been established for several years. When the two mirids were combined in manipulated trials in a polytunnel, populations were lower compared to when the two mirids occurred separately. Under warm conditions, it is likely that E. eichhorniae would be the superior agent compared to E. catarinensis. The evaluations discussed in this thesis highlighted gaps in agent release methodology in multispecies settings, as well as the need for strategic augmentation pre- and post-winter. It is important to release agents that will complement each other rather than compete, therefore, when releasing agents in a multispecies setting, niche differentiation needs to be considered. Here it is concluded that the best practice for dealing with the mirids is that they should be released individually, and at sites that have no other biological control agents in order to ultimately assess their efficacy. Landscape level, long-term monitoring of biological control programmes shows the impact of the control programme at a broader scale and, are far more informative than short-term studies and at fewer sites. Long-term post-release evaluations should be mandatory in biological control programmes. Furthermore, these assessments will help develop new strategies or improve on existing ones, thus achieve greater success in control.
- Full Text:
- Date Issued: 2020
Quantifying ecosystem restoration recovery and restoration practice following the biological control of invasive alien macrophytes in Southern Africa
- Authors: Motitsoe, Samuel Nkopane
- Date: 2020
- Subjects: Salvinia molesta , Ceratophyllum demersum , Nymphaea mexicana , Invasive plants -- Biological control -- South Africa , Aquatic weeds -- Biological control -- South Africa , Restoration monitoring (Ecology) -- South Africa , Biolotical invasions -- Environmental aspects
- Language: English
- Type: text , Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/167519 , vital:41488
- Description: Invasive alien aquatic plants (IAAP) species are known to have deleterious effects on the freshwater ecosystems they invade. This includes both socio-economic and ecologically important ecosystem goods and services. Thus, IAAP species are declared a serious threat, second only to habitat modification for causing a loss of aquatic biodiversity. Three control methods have been widely applied to control IAAP species invasion globally; mechanical, chemical and biological control. Both mechanical and chemical control methods are considered short-term and expensive, whereas biological control methods are regarded an effective and long-term solution for IAAP species control at the landscape level. But, little is known of the ecological recovery following the biological control of IAAP species, with mechanical control known to have had mixed success and chemical control to have non-targeted effects on aquatic ecosystems, causing harm to wildlife and human well-being. Biological control practitioners measure the success of biological control based on: (1) the biological control agents’ establishment and the negative impacts they impose on the targeted weed; and (2) the weeds biomass reduction and an increase in native macrophytes species. Arguably, measures of biological control success have been subjective and variable across the globe. Although some field studies have demonstrated biological control success to have positive socio-economic returns, there is little literature on ecological benefits. Furthermore, there is limited understanding on ecosystem recovery and possible restoration efforts following the biological control IAAP species, as compared to alien weeds in terrestrial and riparian ecosystems. Thus, this thesis aimed to quantify the ecological recovery i.e. aquatic biodiversity, ecosystem processes and trophic interactions following the management of Salvinia molesta in freshwater ecosystems. The research employed a suite of Before-After Control-Impact mesocosm and field studies to investigate the response of aquatic microalgae, macroinvertebrates and their interactions (food web structure and function) during S. molesta infestation and after mechanical and biological control. The mesocosm experiment (Before invasion, During invasion & After control) showed that both aquatic microalgae and macroinvertebrate diversity indices were reliable biological indicators of S. molesta ecological impacts and recovery following control. The restored treatment (100% S. molesta cover + biological control agents), demonstrated complete aquatic microalgae and macroinvertebrate recovery following biological control, similar to the control treatment (open water), where the degraded/impacted treatment (100% S. molesta cover with no biological control agents) showed a drastic decline in aquatic biodiversity and a complete shift in aquatic biota assemblage structure. Thus, the biological control effort by Cyrtobagous salviniae, the biological control agent for S. molesta, assisted in the recovery of aquatic biota following successful biological control. The field study (four field sites, two sites controlled mechanically and two biologically) investigated water quality, aquatic biodiversity and community trophic interactions (aquatic food web) “before and after” S. molesta control. The study showed a drastic decline in aquatic biodiversity (with three sites showing no record of aquatic macroinvertebrates, thus no biotic interactions during infestation) and poor water quality due to the shade-effect (light barrier due to floating S. molesta mats on the water surface) during the “before” S. molesta control phase. However, following both mechanical and biological control (“after” S. molesta control phase), there was a significant shift in abiotic and biotic ecosystem characteristics as compared to the “before” S. molesta control phase. Thus, rapid ecosystem recovery was apparent as a result of aquatic microalgae and macroinvertebrates recolonisation. Sites showed a normal functioning ecosystem where improved water quality, increased biodiversity, productivity and trophic interactions, was indicative of the return of biologically and functionally important species which were lost during the “before” S. molesta phase. Although the clear water state showed positive outcomes at Westlake River, these were short lived when the system was dominated by a cosmopolitan submerged Ceratophyllum demersum, and later replaced by a floating-leaved emergent IAAP Nymphaea mexicana. Each state was responsible for a significant shift in both biotic and abiotic characteristics, affirming macrophyte abilities to influence aquatic environments structure and functions. Furthermore, this event showed a clear example of a secondary invasion. Thus, a holistic IAAP species management strategy is necessary to restore previously invaded ecosystems and prevent subsequent secondary invasion and ecosystem degradation. In conclusion, the S. molesta shade-effect like any other free-floating IAAP species, was identified as the main degrading factor and responsible for water quality reduction, loss of aquatic diversity and shift in aquatic biota assemblage structure. Following S. molesta removal (or shade-effect elimination), there was a positive response to aquatic ecosystem species abundance, richness, diversity and community structure. Therefore, in combination, aquatic biota recolonisation rate and increases in biological and functional diversity were instrumental in the recovery of ecosystem structure and functions, following the control of S. molesta. Echoing existing literature, this thesis recommends: (1) IAAP species management programmes (mechanical and/or biological control) should not only aim to control the weed but also focus on ecosystems recovery and possible restoration goals; (2) biological control should be used where appropriate to combat free-floating IAAP species in freshwater ecosystems, followed by active introduction of native macrophyte propagules since they are limited by anthropogenic activities; and (3) more freshwater case studies are needed to add to our understanding of IAAP species management and restoration effort incorporating long-term monitoring.
- Full Text:
- Date Issued: 2020
- Authors: Motitsoe, Samuel Nkopane
- Date: 2020
- Subjects: Salvinia molesta , Ceratophyllum demersum , Nymphaea mexicana , Invasive plants -- Biological control -- South Africa , Aquatic weeds -- Biological control -- South Africa , Restoration monitoring (Ecology) -- South Africa , Biolotical invasions -- Environmental aspects
- Language: English
- Type: text , Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/167519 , vital:41488
- Description: Invasive alien aquatic plants (IAAP) species are known to have deleterious effects on the freshwater ecosystems they invade. This includes both socio-economic and ecologically important ecosystem goods and services. Thus, IAAP species are declared a serious threat, second only to habitat modification for causing a loss of aquatic biodiversity. Three control methods have been widely applied to control IAAP species invasion globally; mechanical, chemical and biological control. Both mechanical and chemical control methods are considered short-term and expensive, whereas biological control methods are regarded an effective and long-term solution for IAAP species control at the landscape level. But, little is known of the ecological recovery following the biological control of IAAP species, with mechanical control known to have had mixed success and chemical control to have non-targeted effects on aquatic ecosystems, causing harm to wildlife and human well-being. Biological control practitioners measure the success of biological control based on: (1) the biological control agents’ establishment and the negative impacts they impose on the targeted weed; and (2) the weeds biomass reduction and an increase in native macrophytes species. Arguably, measures of biological control success have been subjective and variable across the globe. Although some field studies have demonstrated biological control success to have positive socio-economic returns, there is little literature on ecological benefits. Furthermore, there is limited understanding on ecosystem recovery and possible restoration efforts following the biological control IAAP species, as compared to alien weeds in terrestrial and riparian ecosystems. Thus, this thesis aimed to quantify the ecological recovery i.e. aquatic biodiversity, ecosystem processes and trophic interactions following the management of Salvinia molesta in freshwater ecosystems. The research employed a suite of Before-After Control-Impact mesocosm and field studies to investigate the response of aquatic microalgae, macroinvertebrates and their interactions (food web structure and function) during S. molesta infestation and after mechanical and biological control. The mesocosm experiment (Before invasion, During invasion & After control) showed that both aquatic microalgae and macroinvertebrate diversity indices were reliable biological indicators of S. molesta ecological impacts and recovery following control. The restored treatment (100% S. molesta cover + biological control agents), demonstrated complete aquatic microalgae and macroinvertebrate recovery following biological control, similar to the control treatment (open water), where the degraded/impacted treatment (100% S. molesta cover with no biological control agents) showed a drastic decline in aquatic biodiversity and a complete shift in aquatic biota assemblage structure. Thus, the biological control effort by Cyrtobagous salviniae, the biological control agent for S. molesta, assisted in the recovery of aquatic biota following successful biological control. The field study (four field sites, two sites controlled mechanically and two biologically) investigated water quality, aquatic biodiversity and community trophic interactions (aquatic food web) “before and after” S. molesta control. The study showed a drastic decline in aquatic biodiversity (with three sites showing no record of aquatic macroinvertebrates, thus no biotic interactions during infestation) and poor water quality due to the shade-effect (light barrier due to floating S. molesta mats on the water surface) during the “before” S. molesta control phase. However, following both mechanical and biological control (“after” S. molesta control phase), there was a significant shift in abiotic and biotic ecosystem characteristics as compared to the “before” S. molesta control phase. Thus, rapid ecosystem recovery was apparent as a result of aquatic microalgae and macroinvertebrates recolonisation. Sites showed a normal functioning ecosystem where improved water quality, increased biodiversity, productivity and trophic interactions, was indicative of the return of biologically and functionally important species which were lost during the “before” S. molesta phase. Although the clear water state showed positive outcomes at Westlake River, these were short lived when the system was dominated by a cosmopolitan submerged Ceratophyllum demersum, and later replaced by a floating-leaved emergent IAAP Nymphaea mexicana. Each state was responsible for a significant shift in both biotic and abiotic characteristics, affirming macrophyte abilities to influence aquatic environments structure and functions. Furthermore, this event showed a clear example of a secondary invasion. Thus, a holistic IAAP species management strategy is necessary to restore previously invaded ecosystems and prevent subsequent secondary invasion and ecosystem degradation. In conclusion, the S. molesta shade-effect like any other free-floating IAAP species, was identified as the main degrading factor and responsible for water quality reduction, loss of aquatic diversity and shift in aquatic biota assemblage structure. Following S. molesta removal (or shade-effect elimination), there was a positive response to aquatic ecosystem species abundance, richness, diversity and community structure. Therefore, in combination, aquatic biota recolonisation rate and increases in biological and functional diversity were instrumental in the recovery of ecosystem structure and functions, following the control of S. molesta. Echoing existing literature, this thesis recommends: (1) IAAP species management programmes (mechanical and/or biological control) should not only aim to control the weed but also focus on ecosystems recovery and possible restoration goals; (2) biological control should be used where appropriate to combat free-floating IAAP species in freshwater ecosystems, followed by active introduction of native macrophyte propagules since they are limited by anthropogenic activities; and (3) more freshwater case studies are needed to add to our understanding of IAAP species management and restoration effort incorporating long-term monitoring.
- Full Text:
- Date Issued: 2020
The effects of elevated atmospheric CO2 on the biological control of invasive aquatic weeds in South Africa
- Authors: Baso, Nompumelelo Catherine
- Date: 2020
- Subjects: Aquatic weeds -- Biological control -- South Africa , Plants -- Effect of atmospheric carbon dioxide on , Atmospheric carbon dioxide -- Environmental aspects
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/140772 , vital:37917
- Description: There has been a rapid increase in atmospheric CO2 concentration, from pre-industrial values of 280 ppm to more than 400 ppm currently, and this is expected to more than double by the end of the 21st century. Studies have shown that plants grown above 600 ppm tend to have an increased growth rate and invest more in carbon-based defences. This has important implications for the management of invasive alien plants, especially for the field of biological control which is mostly dependent on herbivorous insects. This is because insects reared on such plants have been shown to have reduced overall fitness. Nevertheless, most of the studies on potential changes in plant-insect interactions under elevated CO2 are based on agricultural systems, with only a limited number of these types of studies conducted on alien invasive weeds. However, climate change and invasive species are two of the most prevalent features of global environmental change. Therefore, this also warrants active research and experimental studies to better understand how these systems will be affected by future climates. Thus, the aim of this study was to investigate the effects of elevated atmospheric CO2 on the biological control of four invasive aquatic weeds (Azolla filiculoides, Salvinia molesta, Pistia stratiotes, and Myriophyllum aquaticum). These species are a threat to natural resources in South Africa but are currently under successful control by their biological control agents (Stenopelmus rufinasus, Cyrtobagous salviniae, Neohydronomus affinis, and Lysathia n. sp.). To achieve this, the selected plant species were grown in a three-factor experimental design in winter (CO2 X nutrients X herbivory), and another two-factorial design in summer (CO2 X herbivory). Atmospheric CO2 concentrations were set at ambient (400 ppm) or elevated (800 ppm), as per the predictions of the IPCC. As per my hypothesis, the results suggest that these species will become more challenging in future due to increased biomass production, asexual reproduction and a higher C: N ratio which is evident under high CO2 concentrations. Although the biological control agents were in some instances able to reduce this CO2 fertilisation effect, their efficacy was significantly reduced compared with the levels of control observed at ambient CO2. These results suggest that additional biological control agents and other management methods may be needed for continued control of these invasive macrophytes, both in South Africa and further afield where they are problematic.
- Full Text:
- Date Issued: 2020
- Authors: Baso, Nompumelelo Catherine
- Date: 2020
- Subjects: Aquatic weeds -- Biological control -- South Africa , Plants -- Effect of atmospheric carbon dioxide on , Atmospheric carbon dioxide -- Environmental aspects
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/140772 , vital:37917
- Description: There has been a rapid increase in atmospheric CO2 concentration, from pre-industrial values of 280 ppm to more than 400 ppm currently, and this is expected to more than double by the end of the 21st century. Studies have shown that plants grown above 600 ppm tend to have an increased growth rate and invest more in carbon-based defences. This has important implications for the management of invasive alien plants, especially for the field of biological control which is mostly dependent on herbivorous insects. This is because insects reared on such plants have been shown to have reduced overall fitness. Nevertheless, most of the studies on potential changes in plant-insect interactions under elevated CO2 are based on agricultural systems, with only a limited number of these types of studies conducted on alien invasive weeds. However, climate change and invasive species are two of the most prevalent features of global environmental change. Therefore, this also warrants active research and experimental studies to better understand how these systems will be affected by future climates. Thus, the aim of this study was to investigate the effects of elevated atmospheric CO2 on the biological control of four invasive aquatic weeds (Azolla filiculoides, Salvinia molesta, Pistia stratiotes, and Myriophyllum aquaticum). These species are a threat to natural resources in South Africa but are currently under successful control by their biological control agents (Stenopelmus rufinasus, Cyrtobagous salviniae, Neohydronomus affinis, and Lysathia n. sp.). To achieve this, the selected plant species were grown in a three-factor experimental design in winter (CO2 X nutrients X herbivory), and another two-factorial design in summer (CO2 X herbivory). Atmospheric CO2 concentrations were set at ambient (400 ppm) or elevated (800 ppm), as per the predictions of the IPCC. As per my hypothesis, the results suggest that these species will become more challenging in future due to increased biomass production, asexual reproduction and a higher C: N ratio which is evident under high CO2 concentrations. Although the biological control agents were in some instances able to reduce this CO2 fertilisation effect, their efficacy was significantly reduced compared with the levels of control observed at ambient CO2. These results suggest that additional biological control agents and other management methods may be needed for continued control of these invasive macrophytes, both in South Africa and further afield where they are problematic.
- Full Text:
- Date Issued: 2020
Climatic suitability of Dichrorampha odorata Brown and Zachariades (Lepidoptera: Tortricidae), a shoot-boring moth for the biological control of Chromolaena odorata (L.) R.M. King and H. Robinson (Asteraceae) in South Africa
- Authors: Nqayi, Slindile Brightness
- Date: 2019
- Subjects: CLIMEX , Chromolaena odorata -- Biological control -- South Africa , Tortricidae -- South Africa , Bioclimatology -- Software
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/92208 , vital:30681
- Description: Biological control using natural enemies introduced from the native range is an integral component of the management of Chromolaena odorata, a serious invader in the eastern regions of South Africa. A number of biological control agents for C. odorata have been released in South Africa, and one of them, Dichrorampha odorata, has failed to establish. To understand if D. odorata failed to establish due to climate incompatibility, its thermal physiology was investigated. Thermal tolerance data were used to determine the developmental thresholds and number of generations that D. odorata is capable of going through in South Africa per year. These predictions were generated using CLIMEX temperature data and the degree-day parameters K and t0. Developmental time decreased with increasing temperatures ranging from 20 °C to 30°C, with immature stages not able to complete development at 18°C and 32°C. The developmental threshold, to, was determined as 8.45 °C with 872.4 degree-days required to complete development (K), indicating that D. odorata is capable of producing a maximum number of 6.5 generations per year in South Africa. The CLIMEX data indicated that the east coast regions of South Africa, which are the heaviest invaded areas by C. odorata in South Africa, were climatically most suitable for D. odorata to. D. odorata lower (LLT50) and upper (ULT50) lethal temperatures were -4.5°C and 39.64°C for larvae and 1.83 and 41.02°C for adults, and D. odorata adults were able to maintain locomotory functioning at 4.4 to 43.7°C, respectively. Acclimation at low and high temperatures indicate that when D. odorata was kept at a lower temperature of 20°C for 7 days, it became tolerant to warmer and cooler temperatures (1.95 and 44.41°C) when compared to D. odorata reared at 25°C (3.36 and 43.67°C) and 30°C (5.92 and 42.93°C). Dichrorampha odorata is therefore climatically suitable for release and should establish in South Africa to control C. odorata. The establishment and persistence of D. odorata will not be limited by climatic conditions but rather the distribution of its host weed, C. odorata in South Africa. Also, this study presents a decision-making protocol for the release of D. odorata to allow better performance in the field.
- Full Text:
- Date Issued: 2019
- Authors: Nqayi, Slindile Brightness
- Date: 2019
- Subjects: CLIMEX , Chromolaena odorata -- Biological control -- South Africa , Tortricidae -- South Africa , Bioclimatology -- Software
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/92208 , vital:30681
- Description: Biological control using natural enemies introduced from the native range is an integral component of the management of Chromolaena odorata, a serious invader in the eastern regions of South Africa. A number of biological control agents for C. odorata have been released in South Africa, and one of them, Dichrorampha odorata, has failed to establish. To understand if D. odorata failed to establish due to climate incompatibility, its thermal physiology was investigated. Thermal tolerance data were used to determine the developmental thresholds and number of generations that D. odorata is capable of going through in South Africa per year. These predictions were generated using CLIMEX temperature data and the degree-day parameters K and t0. Developmental time decreased with increasing temperatures ranging from 20 °C to 30°C, with immature stages not able to complete development at 18°C and 32°C. The developmental threshold, to, was determined as 8.45 °C with 872.4 degree-days required to complete development (K), indicating that D. odorata is capable of producing a maximum number of 6.5 generations per year in South Africa. The CLIMEX data indicated that the east coast regions of South Africa, which are the heaviest invaded areas by C. odorata in South Africa, were climatically most suitable for D. odorata to. D. odorata lower (LLT50) and upper (ULT50) lethal temperatures were -4.5°C and 39.64°C for larvae and 1.83 and 41.02°C for adults, and D. odorata adults were able to maintain locomotory functioning at 4.4 to 43.7°C, respectively. Acclimation at low and high temperatures indicate that when D. odorata was kept at a lower temperature of 20°C for 7 days, it became tolerant to warmer and cooler temperatures (1.95 and 44.41°C) when compared to D. odorata reared at 25°C (3.36 and 43.67°C) and 30°C (5.92 and 42.93°C). Dichrorampha odorata is therefore climatically suitable for release and should establish in South Africa to control C. odorata. The establishment and persistence of D. odorata will not be limited by climatic conditions but rather the distribution of its host weed, C. odorata in South Africa. Also, this study presents a decision-making protocol for the release of D. odorata to allow better performance in the field.
- Full Text:
- Date Issued: 2019
Post-release evaluation of Megamelus scutellaris Berg. (hemiptera: delphacidae): a biological control agent of water hyacinth Eichhornia crassipes (Mart.) Solms-Laub (Pontederiaceae) in South Africa
- Authors: Miller, Benjamin Erich
- Date: 2019
- Subjects: Megamelus scutellaris Berg. , Delphacidae , Noxious weeds -- Biological control -- South Africa , Aquatic weeds -- Biological control -- South Africa , Water hyacinth -- Biological control -- South Africa , Biological pest control agents
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/92330 , vital:30710
- Description: Water hyacinth, Eichhornia crassipes (Mart.) Solms-Laub. (Pontederiaceae) is a free-floating aquatic macrophyte from South America that was introduced to South Africa in the 1900s for its attractive ornamental flowers. The plant was classified as a serious invader in the country in the 1970s, eventually becoming the worst invasive aquatic plant in South Africa. Biological control is widely regarded as the most effective method of managing water hyacinth, as it is ecologically safe, cost-effective, and self-sustaining. To date, nine biological control agents have been released in South Africa against water hyacinth, including eight arthropods and a pathogen. Due to the cumulative effects of highly eutrophic waterbodies, which mitigate the damage caused by biological control, and the cold winters which inhibit the rate of biological control agent population build up, South Africa currently has more biological control agents released on water hyacinth than anywhere else in the world. The need for a cold-tolerant agent that can reproduce and develop quickly, while still being damaging to water hyacinth in eutrophic systems, led to the introduction of the most recently released water hyacinth biological control agent, the planthopper Megamelus scutellaris Berg (Hemiptera: Delphacidae), which was initially collected from Argentina. This thesis formed the first post-release evaluation of M. scutellaris since its release in South Africa in 2013. It included a greenhouse experiment to measure the agent’s feeding damage in relation to different nutrient levels and stocking rates, as well as a field component to evaluate both the post-winter recovery of M. scutellaris, and a nationwide survey to measure the establishment of the agent around the country in relation to climate, water quality, and plant health. In the greenhouse experiment, the feeding damage was quantified using measurements of plant growth parameters and chlorophyll fluorometry. It was found that, like other biological control agents of water hyacinth, M. scutellaris was most damaging when released in high numbers on plants grown at medium nutrient levels, and less effective on plants grown at elevated nutrient levels. A water hyacinth infestation on the Kubusi River was selected for the evaluation of the post-winter recovery of M. scutellaris. The Kubusi River is both the first site where M. scutellaris was released, and the coldest site where water hyacinth biological control agents have established successfully in South Africa. Monthly visits tracking seasonal plant health characteristics and agent population densities indicated that the populations of M. scutellaris were impacted most significantly by the season. Low temperatures led to the water hyacinth plants being of poor quality during the winter, which had a subsequent negative effect on the agent populations. The agents could only fully recover by late summer, which meant that the plants were without any significant biological control through the initial phases of the growing season, when they were most vulnerable, and a significant lag-phase occurred between the recovery of the plants and the recovery of the agent population after the winter bottleneck. A survey of all sites where M. scutellaris had been released in South Africa yielded 16 sites where the agents had successfully established, having survived at least one full winter. Among these sites were four sites where the agents were found without them having been released, indicating that they can disperse unaided to new sites. The temperature was a major factor responsible for the success or failure of establishment, with very few agents surviving in the hot areas of South Africa or in areas with a high frost incidence. The density of M. scutellaris was higher in nutrient-rich water, and on plants with more leaves, suggesting that the quality of the plants also contributed to establishment. The results of this thesis showed that M. scutellaris is able to establish successfully in South Africa, and that the agents are capable of causing significant damage to water hyacinth, making it a promising addition to the biological control programme. Novel methods of measuring subtle insect feeding damage in plants and quantifying agent populations are also discussed, along with suggestions for the future implementation of M. scutellaris in South Africa.
- Full Text:
- Date Issued: 2019
- Authors: Miller, Benjamin Erich
- Date: 2019
- Subjects: Megamelus scutellaris Berg. , Delphacidae , Noxious weeds -- Biological control -- South Africa , Aquatic weeds -- Biological control -- South Africa , Water hyacinth -- Biological control -- South Africa , Biological pest control agents
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/92330 , vital:30710
- Description: Water hyacinth, Eichhornia crassipes (Mart.) Solms-Laub. (Pontederiaceae) is a free-floating aquatic macrophyte from South America that was introduced to South Africa in the 1900s for its attractive ornamental flowers. The plant was classified as a serious invader in the country in the 1970s, eventually becoming the worst invasive aquatic plant in South Africa. Biological control is widely regarded as the most effective method of managing water hyacinth, as it is ecologically safe, cost-effective, and self-sustaining. To date, nine biological control agents have been released in South Africa against water hyacinth, including eight arthropods and a pathogen. Due to the cumulative effects of highly eutrophic waterbodies, which mitigate the damage caused by biological control, and the cold winters which inhibit the rate of biological control agent population build up, South Africa currently has more biological control agents released on water hyacinth than anywhere else in the world. The need for a cold-tolerant agent that can reproduce and develop quickly, while still being damaging to water hyacinth in eutrophic systems, led to the introduction of the most recently released water hyacinth biological control agent, the planthopper Megamelus scutellaris Berg (Hemiptera: Delphacidae), which was initially collected from Argentina. This thesis formed the first post-release evaluation of M. scutellaris since its release in South Africa in 2013. It included a greenhouse experiment to measure the agent’s feeding damage in relation to different nutrient levels and stocking rates, as well as a field component to evaluate both the post-winter recovery of M. scutellaris, and a nationwide survey to measure the establishment of the agent around the country in relation to climate, water quality, and plant health. In the greenhouse experiment, the feeding damage was quantified using measurements of plant growth parameters and chlorophyll fluorometry. It was found that, like other biological control agents of water hyacinth, M. scutellaris was most damaging when released in high numbers on plants grown at medium nutrient levels, and less effective on plants grown at elevated nutrient levels. A water hyacinth infestation on the Kubusi River was selected for the evaluation of the post-winter recovery of M. scutellaris. The Kubusi River is both the first site where M. scutellaris was released, and the coldest site where water hyacinth biological control agents have established successfully in South Africa. Monthly visits tracking seasonal plant health characteristics and agent population densities indicated that the populations of M. scutellaris were impacted most significantly by the season. Low temperatures led to the water hyacinth plants being of poor quality during the winter, which had a subsequent negative effect on the agent populations. The agents could only fully recover by late summer, which meant that the plants were without any significant biological control through the initial phases of the growing season, when they were most vulnerable, and a significant lag-phase occurred between the recovery of the plants and the recovery of the agent population after the winter bottleneck. A survey of all sites where M. scutellaris had been released in South Africa yielded 16 sites where the agents had successfully established, having survived at least one full winter. Among these sites were four sites where the agents were found without them having been released, indicating that they can disperse unaided to new sites. The temperature was a major factor responsible for the success or failure of establishment, with very few agents surviving in the hot areas of South Africa or in areas with a high frost incidence. The density of M. scutellaris was higher in nutrient-rich water, and on plants with more leaves, suggesting that the quality of the plants also contributed to establishment. The results of this thesis showed that M. scutellaris is able to establish successfully in South Africa, and that the agents are capable of causing significant damage to water hyacinth, making it a promising addition to the biological control programme. Novel methods of measuring subtle insect feeding damage in plants and quantifying agent populations are also discussed, along with suggestions for the future implementation of M. scutellaris in South Africa.
- Full Text:
- Date Issued: 2019
Reproductive isolation mechanisms of two cryptic species of Eccritotarsus (Hemiptera: Miridae), biological control agents of water hyacinth, Eichhornia crassipes (Martius) Solms-Laubach (Pontederiaceae)
- Authors: Mnguni, Sandiso
- Date: 2019
- Subjects: Eccritotarsus , Meridae , Noxious weeds -- Biological control -- South Africa , Aquatic weeds -- Biological control -- South Africa , Water hyacinth -- Biological control -- South Africa , Biological pest control agents
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/68133 , vital:29202
- Description: Water hyacinth, Eichhornia crassipes (Martius) Solms-Laubach (Pontederiaceae), is one of the world’s worst alien invasive plants. It is indigenous to the Amazon basin in South America but has become a problematic alien invasive in other parts of the world. As such, several host-specific biological control agents have been sourced from the native distributions in South America and have been released to control this plant where it has become problematic. Two of these agents include the geographically and reproductively isolated cryptic species of Eccritotarsus (Hemiptera: Miridae). One of these species was collected in the upper reaches of the Amazon River in Peru, while the other was collected over 3500km away from that site, in Florianopolis, southern Brazil. These cryptic species were thought to be a single species until recently, when DNA barcoding indicated that they were likely to be two species, and the species status has now been confirmed by interbreeding experiments and detailed morphological studies. The Brazilian population remains Eccritotarsus catarinensis (Carvalho), while the Peruvian population is now known as Eccritotarsus eichhorniae (Henry). The aim of this project was to investigate the mating behaviour and other behavioural traits of the two species that have resulted in reproductive isolation, and which could have led to speciation. In addition, investigations involving analysis of chemical compound compositions of the two species aimed to determine the extent to which the compounds played a role in the development and maintenance of reproductive isolation. To achieve the aims, behavioural-observation experiments were conducted in the form of no-choice, bi-choice and multi-choice tests in 1:1, 2:1 and 3:1 sex ratio assessments, both within and between species. Chemical compound compositions of E. catarinensis and E. eichhorniae were also assessed using Nuclear Magnetic Resonance (NMR), Solid-phase micro-extraction (SPME) and Gas-Chromatography Mass-Spectrometry (GC-MS) techniques. In no-choice experiments, the highest number of single and multiple copula incidences, and average total copula duration was found within species while copulation between species was much rarer. In bi-choice experiments, E. eichhorniae females and E. catarinensis males only chose to mate with their respective conspecifics, and within species copulations continued to have higher average total copula duration. In multi-choice experiments, the highest number of single and multiple copula incidences and average total copula duration was also found within species. GC-MS analysis suggested that E. catarinensis females and E. eichhorniae males have unique chemical compounds missing in their conspecifics and same sex of the other species. Further analysis suggested that E. catarinensis females and E. eichhorniae males have similar chemical compound compositions, whereas as E. eichhorniae females and E. catarinensis males have similar chemical compound compositions. These results suggest that there are behavioural differences that led to the development and maintenance of prezygotic reproductive isolation mechanisms, and that this is probably driven by pheromones in chemical compound compositions. These two species were geographically isolated in the native range and the populations have diverged to the point that they are now reproductively incompatible and therefore, distinct species. The main driver of the speciation is most likely mate recognition and attraction, as only reproductively important traits such as pheromones, genitalia, the scent glands and antennae have changed, while other traits, including host range and morphology, have remained remarkably stable. This provides evidence that differences in sexual selection in isolated populations may be important drivers of speciation and reproductive isolation in cryptic species.
- Full Text:
- Date Issued: 2019
- Authors: Mnguni, Sandiso
- Date: 2019
- Subjects: Eccritotarsus , Meridae , Noxious weeds -- Biological control -- South Africa , Aquatic weeds -- Biological control -- South Africa , Water hyacinth -- Biological control -- South Africa , Biological pest control agents
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/68133 , vital:29202
- Description: Water hyacinth, Eichhornia crassipes (Martius) Solms-Laubach (Pontederiaceae), is one of the world’s worst alien invasive plants. It is indigenous to the Amazon basin in South America but has become a problematic alien invasive in other parts of the world. As such, several host-specific biological control agents have been sourced from the native distributions in South America and have been released to control this plant where it has become problematic. Two of these agents include the geographically and reproductively isolated cryptic species of Eccritotarsus (Hemiptera: Miridae). One of these species was collected in the upper reaches of the Amazon River in Peru, while the other was collected over 3500km away from that site, in Florianopolis, southern Brazil. These cryptic species were thought to be a single species until recently, when DNA barcoding indicated that they were likely to be two species, and the species status has now been confirmed by interbreeding experiments and detailed morphological studies. The Brazilian population remains Eccritotarsus catarinensis (Carvalho), while the Peruvian population is now known as Eccritotarsus eichhorniae (Henry). The aim of this project was to investigate the mating behaviour and other behavioural traits of the two species that have resulted in reproductive isolation, and which could have led to speciation. In addition, investigations involving analysis of chemical compound compositions of the two species aimed to determine the extent to which the compounds played a role in the development and maintenance of reproductive isolation. To achieve the aims, behavioural-observation experiments were conducted in the form of no-choice, bi-choice and multi-choice tests in 1:1, 2:1 and 3:1 sex ratio assessments, both within and between species. Chemical compound compositions of E. catarinensis and E. eichhorniae were also assessed using Nuclear Magnetic Resonance (NMR), Solid-phase micro-extraction (SPME) and Gas-Chromatography Mass-Spectrometry (GC-MS) techniques. In no-choice experiments, the highest number of single and multiple copula incidences, and average total copula duration was found within species while copulation between species was much rarer. In bi-choice experiments, E. eichhorniae females and E. catarinensis males only chose to mate with their respective conspecifics, and within species copulations continued to have higher average total copula duration. In multi-choice experiments, the highest number of single and multiple copula incidences and average total copula duration was also found within species. GC-MS analysis suggested that E. catarinensis females and E. eichhorniae males have unique chemical compounds missing in their conspecifics and same sex of the other species. Further analysis suggested that E. catarinensis females and E. eichhorniae males have similar chemical compound compositions, whereas as E. eichhorniae females and E. catarinensis males have similar chemical compound compositions. These results suggest that there are behavioural differences that led to the development and maintenance of prezygotic reproductive isolation mechanisms, and that this is probably driven by pheromones in chemical compound compositions. These two species were geographically isolated in the native range and the populations have diverged to the point that they are now reproductively incompatible and therefore, distinct species. The main driver of the speciation is most likely mate recognition and attraction, as only reproductively important traits such as pheromones, genitalia, the scent glands and antennae have changed, while other traits, including host range and morphology, have remained remarkably stable. This provides evidence that differences in sexual selection in isolated populations may be important drivers of speciation and reproductive isolation in cryptic species.
- Full Text:
- Date Issued: 2019
The invasion ecology of Nymphaea mexicana Zucc. (Mexican Water lily) in South Africa
- Authors: Naidu, Prinavin
- Date: 2019
- Subjects: Nymphaea Mexicana zuccarini , Nymphaea , Nymphaea -- Biological control -- South Africa , Water lilies , Nymphaea -- Ecology -- South Africa , Water lilies -- Biological control -- South Africa , Invasive plants -- Biological control -- South Africa , Aquatic weeds -- Biological control -- South Africa , Water lilies -- Ecology -- South Africa
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/92920 , vital:30763
- Description: The Mexican water lily, Nymphaea mexicana Zuccarini, is an aquatic perennial, native to southern USA and Mexico, and has been introduced to South Africa via the ornamental plant trade. This species has rapid growth rates and becomes weedy in dams, ponds and rivers. It is currently listed as a NEM:BA category 1b invasive plant in South Africa. One possible management measure for this weed is biological control, but it is a novel target because no biological control programme has been initiated against it anywhere in the world. This study is intended as a baseline for the biological control programme against this plant in South Africa. Assessing the population structure and mode of reproduction of invasive alien plants is an imperative aid to determining if biological control is a suitable management option. Using amplified fragment length polymorphism (AFLP) molecular markers, I compared the amount of genetic variability and differentiation of N. mexicana in its native range (USA), and invasive range (South Africa). Results indicated a large genetic distance between populations in the USA and South Africa, compared to populations within each country. The genetic variability of the invasive populations was higher than that found in the native distribution. This could be due to hybridization in the introduced range, and/or multiple introductions from different source populations. Differences in the morphology of N. mexicana plants in the invasive range and South Africa were also observed which confirm the results of the genetic analyses. I also assessed the reproductive mode of N. mexicana cultivars/hybrids by conducting breeding system experiments and field pollinator studies. Results indicated that the cultivars are sterile, suggesting that the primary mode of reproduction is asexual via fragmentation of tubers. The main pollinators that were found to be associated with the cultivars in South Africa were honeybees, sweat bees, flies and beetles. These insect groups were the same as those that were observed in another study which was conducted on the pollinators associated with the pure N. mexicana in the native range in southern USA. Mechanical and chemical control of N. mexicana and its multiple genotypes have been applied but have not been efficient due to the fast regeneration of shoots, especially in summer. Therefore, these two management options are not long–term solutions and will also be costly due to the widespread occurrence of the hybrids in South Africa. Thus the only cost–effective, environmentally friendly, self–sustainable and long–term management option is biological control. The significant divergence between native and invasive populations of N. mexicana, as well as the possibility of numerous invasive cultivars, may limit future prospects of biological control of this species. However the differences in the root structures between native South African waterlilies, such as N. lotus and N. nouchali, and the introduced waterlilies, such as N. mexicana and its associated hybrids, may play a pivotal role in the success of biological control of the N. mexicana hybrid complex in South Africa. Natural enemies which feed on the hard tuberous roots of N. mexicana and its hybrids, as opposed to the soft bulbs of the native N. nouchali and N. lotus, should be prioritised.
- Full Text:
- Date Issued: 2019
- Authors: Naidu, Prinavin
- Date: 2019
- Subjects: Nymphaea Mexicana zuccarini , Nymphaea , Nymphaea -- Biological control -- South Africa , Water lilies , Nymphaea -- Ecology -- South Africa , Water lilies -- Biological control -- South Africa , Invasive plants -- Biological control -- South Africa , Aquatic weeds -- Biological control -- South Africa , Water lilies -- Ecology -- South Africa
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/92920 , vital:30763
- Description: The Mexican water lily, Nymphaea mexicana Zuccarini, is an aquatic perennial, native to southern USA and Mexico, and has been introduced to South Africa via the ornamental plant trade. This species has rapid growth rates and becomes weedy in dams, ponds and rivers. It is currently listed as a NEM:BA category 1b invasive plant in South Africa. One possible management measure for this weed is biological control, but it is a novel target because no biological control programme has been initiated against it anywhere in the world. This study is intended as a baseline for the biological control programme against this plant in South Africa. Assessing the population structure and mode of reproduction of invasive alien plants is an imperative aid to determining if biological control is a suitable management option. Using amplified fragment length polymorphism (AFLP) molecular markers, I compared the amount of genetic variability and differentiation of N. mexicana in its native range (USA), and invasive range (South Africa). Results indicated a large genetic distance between populations in the USA and South Africa, compared to populations within each country. The genetic variability of the invasive populations was higher than that found in the native distribution. This could be due to hybridization in the introduced range, and/or multiple introductions from different source populations. Differences in the morphology of N. mexicana plants in the invasive range and South Africa were also observed which confirm the results of the genetic analyses. I also assessed the reproductive mode of N. mexicana cultivars/hybrids by conducting breeding system experiments and field pollinator studies. Results indicated that the cultivars are sterile, suggesting that the primary mode of reproduction is asexual via fragmentation of tubers. The main pollinators that were found to be associated with the cultivars in South Africa were honeybees, sweat bees, flies and beetles. These insect groups were the same as those that were observed in another study which was conducted on the pollinators associated with the pure N. mexicana in the native range in southern USA. Mechanical and chemical control of N. mexicana and its multiple genotypes have been applied but have not been efficient due to the fast regeneration of shoots, especially in summer. Therefore, these two management options are not long–term solutions and will also be costly due to the widespread occurrence of the hybrids in South Africa. Thus the only cost–effective, environmentally friendly, self–sustainable and long–term management option is biological control. The significant divergence between native and invasive populations of N. mexicana, as well as the possibility of numerous invasive cultivars, may limit future prospects of biological control of this species. However the differences in the root structures between native South African waterlilies, such as N. lotus and N. nouchali, and the introduced waterlilies, such as N. mexicana and its associated hybrids, may play a pivotal role in the success of biological control of the N. mexicana hybrid complex in South Africa. Natural enemies which feed on the hard tuberous roots of N. mexicana and its hybrids, as opposed to the soft bulbs of the native N. nouchali and N. lotus, should be prioritised.
- Full Text:
- Date Issued: 2019
Interactions between three biological control agents of water hyacinth, Eichhornia crassipes (Mart.) Solms (Pontederiaceae) in South Africa
- Authors: Petela, Nomvume
- Date: 2018
- Subjects: Water hyacinth -- South Africa , Water hyacinth -- Biological control -- South Africa , Aquatic weeds -- Biological control -- South Africa , Curculionidae , Delphacidae , Miridae , Neochetina eichhorniae Warner , Megamelus scutellaris Berg , Eccritotarsus eichhorniae Henry
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/60676 , vital:27814
- Description: Water hyacinth, Eichhomia crassipes (Mart.) Solms (Pontederiaceae) is a free-floating perennial weed that is regarded as the worst aquatic weed in the world because of its negative impacts on aquatic ecosystems. It is native to the Amazon Basin of South America, but since the late 1800s has spread throughout the world. The first record of the weed in South Africa was noted in 1908 on the Cape Flats and in KwaZulu-Natal, but it is now dispersed throughout the country. Mechanical and chemical control methods have been used against the weed, but biological control is considered the most cost-effective, sustainable and environmentally friendly intervention. Currently, nine biological control agents have been released against water hyacinth in South Africa, and Neochetina eichhorniae Warner (Coleoptera: Curculionidae) is used most widely to control it. However, in some sites, water hyacinth mats have still not been brought under control because of eutrophic waters and cool temperatures. It was therefore necessary to release new biological control agents to complement the impact of N. eichhorniae. Megamelus scutellaris Berg (Hemiptera: Delphacidae) was released in 2013, but little is known about how it interacts with other agents already present in South Africa. It is likely to compete with the established biological control agent, Eccritotarsus eichhorniae Henry (Heteroptera: Miridae), because they are both sap suckers. On the other hand, N. eichhorniae is the most widespread and thus the most important biological control agent for water hyacinth. The aim of this study, then, was to determine the interactions between the two sap-sucking agents in South Africa that presumably occupy similar niches on the plant, and the interaction between M. scutellerais and N. eichhorniae, the most widely distributed and abundant agent in South Africa. Three experiments were conducted at the Waainek Research Facility at Rhodes University, Grahamstown, Eastern Cape, South Africa. Plants were grown for two weeks and insect species were inoculated singly or in combination. Water hyacinth, plant growth parameters and insect parameters were measured every 14 days for a period of 12 weeks. The results of the study showed that feeding by either E. eichhorniae or M. scutellaris had no effect on the feeding of the other agent. Both agents reduced all the measured plant growth parameters equally, either singly or in combination (i.e. E. eichhorniae or M. scutellaris alone or together). The interaction between the two agents appears neutral and agents are likely to complement each other in the field. Prior feeding by E. eichhorniae or M. scutellaris on water hyacinth did not affect the subsequent feeding by either agent. Megamelus scutellaris prefers healthy fresh water hyacinth plants. In addition, planthoppers performed best in combination with the weevil, especially on plants with new weevil feeding scars. The results of the study showed that M. scutellaris is compatible with other biological control agents of water hyacinth that are already established in South Africa. Therefore, the introduction of M. scutellaris may enhance the biological control of water hyacinth in South Africa.
- Full Text:
- Date Issued: 2018
- Authors: Petela, Nomvume
- Date: 2018
- Subjects: Water hyacinth -- South Africa , Water hyacinth -- Biological control -- South Africa , Aquatic weeds -- Biological control -- South Africa , Curculionidae , Delphacidae , Miridae , Neochetina eichhorniae Warner , Megamelus scutellaris Berg , Eccritotarsus eichhorniae Henry
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/60676 , vital:27814
- Description: Water hyacinth, Eichhomia crassipes (Mart.) Solms (Pontederiaceae) is a free-floating perennial weed that is regarded as the worst aquatic weed in the world because of its negative impacts on aquatic ecosystems. It is native to the Amazon Basin of South America, but since the late 1800s has spread throughout the world. The first record of the weed in South Africa was noted in 1908 on the Cape Flats and in KwaZulu-Natal, but it is now dispersed throughout the country. Mechanical and chemical control methods have been used against the weed, but biological control is considered the most cost-effective, sustainable and environmentally friendly intervention. Currently, nine biological control agents have been released against water hyacinth in South Africa, and Neochetina eichhorniae Warner (Coleoptera: Curculionidae) is used most widely to control it. However, in some sites, water hyacinth mats have still not been brought under control because of eutrophic waters and cool temperatures. It was therefore necessary to release new biological control agents to complement the impact of N. eichhorniae. Megamelus scutellaris Berg (Hemiptera: Delphacidae) was released in 2013, but little is known about how it interacts with other agents already present in South Africa. It is likely to compete with the established biological control agent, Eccritotarsus eichhorniae Henry (Heteroptera: Miridae), because they are both sap suckers. On the other hand, N. eichhorniae is the most widespread and thus the most important biological control agent for water hyacinth. The aim of this study, then, was to determine the interactions between the two sap-sucking agents in South Africa that presumably occupy similar niches on the plant, and the interaction between M. scutellerais and N. eichhorniae, the most widely distributed and abundant agent in South Africa. Three experiments were conducted at the Waainek Research Facility at Rhodes University, Grahamstown, Eastern Cape, South Africa. Plants were grown for two weeks and insect species were inoculated singly or in combination. Water hyacinth, plant growth parameters and insect parameters were measured every 14 days for a period of 12 weeks. The results of the study showed that feeding by either E. eichhorniae or M. scutellaris had no effect on the feeding of the other agent. Both agents reduced all the measured plant growth parameters equally, either singly or in combination (i.e. E. eichhorniae or M. scutellaris alone or together). The interaction between the two agents appears neutral and agents are likely to complement each other in the field. Prior feeding by E. eichhorniae or M. scutellaris on water hyacinth did not affect the subsequent feeding by either agent. Megamelus scutellaris prefers healthy fresh water hyacinth plants. In addition, planthoppers performed best in combination with the weevil, especially on plants with new weevil feeding scars. The results of the study showed that M. scutellaris is compatible with other biological control agents of water hyacinth that are already established in South Africa. Therefore, the introduction of M. scutellaris may enhance the biological control of water hyacinth in South Africa.
- Full Text:
- Date Issued: 2018
Investigating thermal physiology as a tool to improve the release efficacy of insect biological control agents
- Authors: Griffith, Tamzin Camilla
- Date: 2018
- Subjects: Aquatic weeds -- Biological control , Water hyacinth -- Biological control , Insects -- Physiology , Miridae -- Effect of low temperatures on , Cold adaptation , Insects as biological pest control agents , Eccritotarsus catarinensis
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/63301 , vital:28391
- Description: Biological control is commonly used for the control of invasive aquatic weeds, which often involves the release of multiple host-specific agents. Releasing multiple agents has inherent safety concerns as the introduction of each new agent is associated with risks, but is often required to improve control where establishment is limited. Climatic incompatibility between the agent’s thermal physiology and its introduced range often causes agents to fail to establish. However, it has been suggested that the thermal physiology of insects is plastic. Therefore, the potential to manipulate their thermal physiologies before releasing them into the field needs to be explored; reducing the need to release additional agents, thereby ensuring the safety of biological control. This thesis therefore aimed to firstly, determine whether season and locality influenced the thermal physiology of two field populations of a water hyacinth (Eichhornia crassipes) control agent, the mirid Eccritotarsus catarinensis; one collected from the hottest establishment site, and one collected from the coldest establishment site in South Africa. Their thermal physiology was significantly influenced by season and not by the sites’ climate, suggesting their thermal physiology is plastic under field conditions. Secondly, the classical method of determining the lower critical thermal limit (CTmin), and a new respirometry method of determining this limit, compared the thermal physiology of two Eccritotarsus species reared in quarantine. Eccritotarsus catarinensis was significantly more cold tolerant than the more recently released Eccritotarsus eichhorniae, despite similar maintenance conditions, and as such, was used to establish whether cold hardening under laboratory conditions was possible. Successfully cold hardened E. catarinensis had a significantly lower CTmin compared to the field cold acclimated population, suggesting that cold hardening of agents could be conducted before release to improve their cold tolerance and increase their chances of establishment, allowing for further adaptation to colder climates in the field to occur. Increasing establishment of the most effective agents will decrease the number of agents needed in a biological control programme, thus encouraging a more parsimonious approach to biological control.
- Full Text:
- Date Issued: 2018
- Authors: Griffith, Tamzin Camilla
- Date: 2018
- Subjects: Aquatic weeds -- Biological control , Water hyacinth -- Biological control , Insects -- Physiology , Miridae -- Effect of low temperatures on , Cold adaptation , Insects as biological pest control agents , Eccritotarsus catarinensis
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/63301 , vital:28391
- Description: Biological control is commonly used for the control of invasive aquatic weeds, which often involves the release of multiple host-specific agents. Releasing multiple agents has inherent safety concerns as the introduction of each new agent is associated with risks, but is often required to improve control where establishment is limited. Climatic incompatibility between the agent’s thermal physiology and its introduced range often causes agents to fail to establish. However, it has been suggested that the thermal physiology of insects is plastic. Therefore, the potential to manipulate their thermal physiologies before releasing them into the field needs to be explored; reducing the need to release additional agents, thereby ensuring the safety of biological control. This thesis therefore aimed to firstly, determine whether season and locality influenced the thermal physiology of two field populations of a water hyacinth (Eichhornia crassipes) control agent, the mirid Eccritotarsus catarinensis; one collected from the hottest establishment site, and one collected from the coldest establishment site in South Africa. Their thermal physiology was significantly influenced by season and not by the sites’ climate, suggesting their thermal physiology is plastic under field conditions. Secondly, the classical method of determining the lower critical thermal limit (CTmin), and a new respirometry method of determining this limit, compared the thermal physiology of two Eccritotarsus species reared in quarantine. Eccritotarsus catarinensis was significantly more cold tolerant than the more recently released Eccritotarsus eichhorniae, despite similar maintenance conditions, and as such, was used to establish whether cold hardening under laboratory conditions was possible. Successfully cold hardened E. catarinensis had a significantly lower CTmin compared to the field cold acclimated population, suggesting that cold hardening of agents could be conducted before release to improve their cold tolerance and increase their chances of establishment, allowing for further adaptation to colder climates in the field to occur. Increasing establishment of the most effective agents will decrease the number of agents needed in a biological control programme, thus encouraging a more parsimonious approach to biological control.
- Full Text:
- Date Issued: 2018