Investigating unimodal isolated signer-independent sign language recognition
- Authors: Marais, Marc Jason
- Date: 2024-04-04
- Subjects: Convolutional neural network , Sign language recognition , Human activity recognition , Pattern recognition systems , Neural networks (Computer science)
- Language: English
- Type: Academic theses , Master's theses , text
- Identifier: http://hdl.handle.net/10962/435343 , vital:73149
- Description: Sign language serves as the mode of communication for the Deaf and Hard of Hearing community, embodying a rich linguistic and cultural heritage. Recent Sign Language Recognition (SLR) system developments aim to facilitate seamless communication between the Deaf community and the broader society. However, most existing systems are limited by signer-dependent models, hindering their adaptability to diverse signing styles and signers, thus impeding their practical implementation in real-world scenarios. This research explores various unimodal approaches, both pose-based and vision-based, for isolated signer-independent SLR using RGB video input on the LSA64 and AUTSL datasets. The unimodal RGB-only input strategy provides a realistic SLR setting where alternative data sources are either unavailable or necessitate specialised equipment. Through systematic testing scenarios, isolated signer-independent SLR experiments are conducted on both datasets, primarily focusing on AUTSL – a signer-independent dataset. The vision-based R(2+1)D-18 model emerged as the top performer, achieving 90.64% accuracy on the unseen AUTSL dataset test split, closely followed by the pose-based Spatio- Temporal Graph Convolutional Network (ST-GCN) model with an accuracy of 89.95%. Furthermore, these models achieved comparable accuracies at a significantly lower computational demand. Notably, the pose-based approach demonstrates robust generalisation to substantial background and signer variation. Moreover, the pose-based approach demands significantly less computational power and training time than vision-based approaches. The proposed unimodal pose-based and vision-based systems were concluded to both be effective at classifying sign classes in the LSA64 and AUTSL datasets. , Thesis (MSc) -- Faculty of Science, Ichthyology and Fisheries Science, 2024
- Full Text:
- Authors: Marais, Marc Jason
- Date: 2024-04-04
- Subjects: Convolutional neural network , Sign language recognition , Human activity recognition , Pattern recognition systems , Neural networks (Computer science)
- Language: English
- Type: Academic theses , Master's theses , text
- Identifier: http://hdl.handle.net/10962/435343 , vital:73149
- Description: Sign language serves as the mode of communication for the Deaf and Hard of Hearing community, embodying a rich linguistic and cultural heritage. Recent Sign Language Recognition (SLR) system developments aim to facilitate seamless communication between the Deaf community and the broader society. However, most existing systems are limited by signer-dependent models, hindering their adaptability to diverse signing styles and signers, thus impeding their practical implementation in real-world scenarios. This research explores various unimodal approaches, both pose-based and vision-based, for isolated signer-independent SLR using RGB video input on the LSA64 and AUTSL datasets. The unimodal RGB-only input strategy provides a realistic SLR setting where alternative data sources are either unavailable or necessitate specialised equipment. Through systematic testing scenarios, isolated signer-independent SLR experiments are conducted on both datasets, primarily focusing on AUTSL – a signer-independent dataset. The vision-based R(2+1)D-18 model emerged as the top performer, achieving 90.64% accuracy on the unseen AUTSL dataset test split, closely followed by the pose-based Spatio- Temporal Graph Convolutional Network (ST-GCN) model with an accuracy of 89.95%. Furthermore, these models achieved comparable accuracies at a significantly lower computational demand. Notably, the pose-based approach demonstrates robust generalisation to substantial background and signer variation. Moreover, the pose-based approach demands significantly less computational power and training time than vision-based approaches. The proposed unimodal pose-based and vision-based systems were concluded to both be effective at classifying sign classes in the LSA64 and AUTSL datasets. , Thesis (MSc) -- Faculty of Science, Ichthyology and Fisheries Science, 2024
- Full Text:
A multispectral and machine learning approach to early stress classification in plants
- Authors: Poole, Louise Carmen
- Date: 2022-04-06
- Subjects: Machine learning , Neural networks (Computer science) , Multispectral imaging , Image processing , Plant stress detection
- Language: English
- Type: Master's thesis , text
- Identifier: http://hdl.handle.net/10962/232410 , vital:49989
- Description: Crop loss and failure can impact both a country’s economy and food security, often to devastating effects. As such, the importance of successfully detecting plant stresses early in their development is essential to minimize spread and damage to crop production. Identification of the stress and the stress-causing agent is the most critical and challenging step in plant and crop protection. With the development of and increase in ease of access to new equipment and technology in recent years, the use of spectroscopy in the early detection of plant diseases has become notably popular. This thesis narrows down the most suitable multispectral imaging techniques and machine learning algorithms for early stress detection. Datasets were collected of visible images and multispectral images. Dehydration was selected as the plant stress type for the main experiments, and data was collected from six plant species typically used in agriculture. Key contributions of this thesis include multispectral and visible datasets showing plant dehydration as well as a separate preliminary dataset on plant disease. Promising results on dehydration showed statistically significant accuracy improvements in the multispectral imaging compared to visible imaging for early stress detection, with multispectral input obtaining a 92.50% accuracy over visible input’s 77.50% on general plant species. The system was effective at stress detection on known plant species, with multispectral imaging introducing greater improvement to early stress detection than advanced stress detection. Furthermore, strong species discrimination was achieved when exclusively testing either early or advanced dehydration against healthy species. , Thesis (MSc) -- Faculty of Science, Ichthyology & Fisheries Sciences, 2022
- Full Text:
- Authors: Poole, Louise Carmen
- Date: 2022-04-06
- Subjects: Machine learning , Neural networks (Computer science) , Multispectral imaging , Image processing , Plant stress detection
- Language: English
- Type: Master's thesis , text
- Identifier: http://hdl.handle.net/10962/232410 , vital:49989
- Description: Crop loss and failure can impact both a country’s economy and food security, often to devastating effects. As such, the importance of successfully detecting plant stresses early in their development is essential to minimize spread and damage to crop production. Identification of the stress and the stress-causing agent is the most critical and challenging step in plant and crop protection. With the development of and increase in ease of access to new equipment and technology in recent years, the use of spectroscopy in the early detection of plant diseases has become notably popular. This thesis narrows down the most suitable multispectral imaging techniques and machine learning algorithms for early stress detection. Datasets were collected of visible images and multispectral images. Dehydration was selected as the plant stress type for the main experiments, and data was collected from six plant species typically used in agriculture. Key contributions of this thesis include multispectral and visible datasets showing plant dehydration as well as a separate preliminary dataset on plant disease. Promising results on dehydration showed statistically significant accuracy improvements in the multispectral imaging compared to visible imaging for early stress detection, with multispectral input obtaining a 92.50% accuracy over visible input’s 77.50% on general plant species. The system was effective at stress detection on known plant species, with multispectral imaging introducing greater improvement to early stress detection than advanced stress detection. Furthermore, strong species discrimination was achieved when exclusively testing either early or advanced dehydration against healthy species. , Thesis (MSc) -- Faculty of Science, Ichthyology & Fisheries Sciences, 2022
- Full Text:
- «
- ‹
- 1
- ›
- »