Removal and recovery of gold and platinum from aqueous solutions utilising the non-viable biomass Asolla filiculoides
- Authors: Antunes, Ana Paula Martins
- Date: 2002
- Subjects: Azolla filiculoides Metal wastes -- Recycling Gold -- Recycling Platinum -- Recycling
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:3894 , http://hdl.handle.net/10962/d1003726
- Description: Waste water from the mining industry is generally extremely complex and contains numerous species which influence the adsorption of the metals to any biomass. A variety of factors need to be addressed before treatment is considered viable. It is also beneficial to establish the binding characteristics of the metal of interest to maximise its interaction with the biomass to be utilised. Azalia filiculaides was investigated in the adsorption of gold(III), lead(II), iron(ID), copper(II) and platinum (IV). In batch studies, the optimum biomass and initial gold(III) concentrations were found to be 5 gIL and 8 mgIL respectively. The adsorption of gold(ID) is principally pH-dependent with optimal removal at pH 2. Lead(II), iron(III) and copper(II) did not compete with gold(III) adsorption under equimolar and simulated effluent conditions. Halides, with increasing affinity for gold (chloride < bromide < iodide), can affect gold uptake with the soft base, iodide, exhibiting the most inhibition (25%) and the hard base, chloride, O%. Mercaptoethanol (soft base) showed no interference in gold(III) adsorption while the presence of sulphate (hard base) and sulphite (borderline base) showed that concentrations in excess of 1 0 mM may adversely affect gold(ill) uptake, most likely due to competition for cationic sites on the biomass. Column studies, better suited to high volume treatment, indicated that a flow-rate of 5 mL/min and an initial gold(ill) concentration of 5 mgIL was optimal. Competitive effects between lead, iron, copper and gold again showed little or no interference. The halides, chloride, bromide and iodide, affect gold(ill) uptake similarly to the batch studies, while the bases mercaptoethanol and sulphate minimally affect gold(III) binding with sulphite severely hampering adsorption (70% inhibition). To optimise gold desorption, preliminary batch studies indicated that a ratio of 1:1 of adsorbentdesorbent was optimal, whilst gas purging of thiourea with oxygen, air and nitrogen decreased gold elution in proportion to decreased amounts of oxygen. A series of desorbents were utilised, in column studies, to optimise and determine the speciation of bound gold. The presence of an oxidant with thiourea enhanced desorption greater than 3 fold when compared with thiourea alone. Thiourea desorption studies, aided by the oxidant, suggest that gold is present in the + I and 0 oxidation states. Ultimately thiourea, perchloric acid and hydrochloric acid was found to be the most optimal elutant for gold (J 00% recovery). For selective metal recovery oflead and copper, pre-washing the plant material with water, utilising an acid (0.3 M nitric acid), pumping in an up-flow mode, and recycling the desorbent six times was found to be optimal elutant for gold (J 00% recovery). Cost analysis of utilising elutant versus incinerating the biomass for gold recovery indicated the latter as the most economical. Over a 5 cycle adsorption and desorption series, acid desorption before each adsorption cycle was found to result in greater than 92% desorption for lead and 96% for copper. Gold recovery was 97% with incineration. A preliminary study with gold effluent (Mine C) indicated that nickel and sulphate was removed in batch and column studies. Gold removal was found to be 100% and 4% in batch and column studies respectively. Adsorption of gold in the effluent study was accompanied by the release ofHt. Modifying the plant material with various reagents failed to identify the primary binding sites and the role of polysaccharides, proteins and lipids in gold(ill) uptake. The mode of gold binding is suggested as being initially ionic, this is very rapid, with the interaction of the anionic complex, [AuCI₄]". with the cationic biomass (PH 2). This eventually leads to the displacement of the chloride ligand(s) initiating covalent binding. Spectral studies of the chemical interaction between gold and the representative tannins indicated the protonated hydroxy groups to be responsible. All evidence suggests that the binding mechanisms of gold are not simple. Preliminary adsorption studies of platinum by Azalia filiculaides were conducted. Batch studies indicated that J gIL biomass concentration, initial platinum concentration of 20 mgIL and pH 2 are optimal, while the column studies indicated a flow-rate of! 0 rnL/min and initial platinum concentration of 20 mgIL as optimal. In the platinum effluent study, platinum showed a removal of 23 % and 2 J % for the batch and column studies respectively. Again adsorption was accompanied by //' release. Azalia filiculaides demonstrated its feasibility in the removal of gold and platinum from simulated as well as waste water solutions. Its potential viability as a biosorbent was demonstrated by the high recovery from synthetic solutions of greater than 99% for gold (2-10 mgIL), and greater than 89% for platinum (20 mgIL).
- Full Text:
- Date Issued: 2002
- Authors: Antunes, Ana Paula Martins
- Date: 2002
- Subjects: Azolla filiculoides Metal wastes -- Recycling Gold -- Recycling Platinum -- Recycling
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:3894 , http://hdl.handle.net/10962/d1003726
- Description: Waste water from the mining industry is generally extremely complex and contains numerous species which influence the adsorption of the metals to any biomass. A variety of factors need to be addressed before treatment is considered viable. It is also beneficial to establish the binding characteristics of the metal of interest to maximise its interaction with the biomass to be utilised. Azalia filiculaides was investigated in the adsorption of gold(III), lead(II), iron(ID), copper(II) and platinum (IV). In batch studies, the optimum biomass and initial gold(III) concentrations were found to be 5 gIL and 8 mgIL respectively. The adsorption of gold(ID) is principally pH-dependent with optimal removal at pH 2. Lead(II), iron(III) and copper(II) did not compete with gold(III) adsorption under equimolar and simulated effluent conditions. Halides, with increasing affinity for gold (chloride < bromide < iodide), can affect gold uptake with the soft base, iodide, exhibiting the most inhibition (25%) and the hard base, chloride, O%. Mercaptoethanol (soft base) showed no interference in gold(III) adsorption while the presence of sulphate (hard base) and sulphite (borderline base) showed that concentrations in excess of 1 0 mM may adversely affect gold(ill) uptake, most likely due to competition for cationic sites on the biomass. Column studies, better suited to high volume treatment, indicated that a flow-rate of 5 mL/min and an initial gold(ill) concentration of 5 mgIL was optimal. Competitive effects between lead, iron, copper and gold again showed little or no interference. The halides, chloride, bromide and iodide, affect gold(ill) uptake similarly to the batch studies, while the bases mercaptoethanol and sulphate minimally affect gold(III) binding with sulphite severely hampering adsorption (70% inhibition). To optimise gold desorption, preliminary batch studies indicated that a ratio of 1:1 of adsorbentdesorbent was optimal, whilst gas purging of thiourea with oxygen, air and nitrogen decreased gold elution in proportion to decreased amounts of oxygen. A series of desorbents were utilised, in column studies, to optimise and determine the speciation of bound gold. The presence of an oxidant with thiourea enhanced desorption greater than 3 fold when compared with thiourea alone. Thiourea desorption studies, aided by the oxidant, suggest that gold is present in the + I and 0 oxidation states. Ultimately thiourea, perchloric acid and hydrochloric acid was found to be the most optimal elutant for gold (J 00% recovery). For selective metal recovery oflead and copper, pre-washing the plant material with water, utilising an acid (0.3 M nitric acid), pumping in an up-flow mode, and recycling the desorbent six times was found to be optimal elutant for gold (J 00% recovery). Cost analysis of utilising elutant versus incinerating the biomass for gold recovery indicated the latter as the most economical. Over a 5 cycle adsorption and desorption series, acid desorption before each adsorption cycle was found to result in greater than 92% desorption for lead and 96% for copper. Gold recovery was 97% with incineration. A preliminary study with gold effluent (Mine C) indicated that nickel and sulphate was removed in batch and column studies. Gold removal was found to be 100% and 4% in batch and column studies respectively. Adsorption of gold in the effluent study was accompanied by the release ofHt. Modifying the plant material with various reagents failed to identify the primary binding sites and the role of polysaccharides, proteins and lipids in gold(ill) uptake. The mode of gold binding is suggested as being initially ionic, this is very rapid, with the interaction of the anionic complex, [AuCI₄]". with the cationic biomass (PH 2). This eventually leads to the displacement of the chloride ligand(s) initiating covalent binding. Spectral studies of the chemical interaction between gold and the representative tannins indicated the protonated hydroxy groups to be responsible. All evidence suggests that the binding mechanisms of gold are not simple. Preliminary adsorption studies of platinum by Azalia filiculaides were conducted. Batch studies indicated that J gIL biomass concentration, initial platinum concentration of 20 mgIL and pH 2 are optimal, while the column studies indicated a flow-rate of! 0 rnL/min and initial platinum concentration of 20 mgIL as optimal. In the platinum effluent study, platinum showed a removal of 23 % and 2 J % for the batch and column studies respectively. Again adsorption was accompanied by //' release. Azalia filiculaides demonstrated its feasibility in the removal of gold and platinum from simulated as well as waste water solutions. Its potential viability as a biosorbent was demonstrated by the high recovery from synthetic solutions of greater than 99% for gold (2-10 mgIL), and greater than 89% for platinum (20 mgIL).
- Full Text:
- Date Issued: 2002
Nutrient supplementation and secondary metaolites in melanoma cells
- Authors: Stoll, Karin Elisabeth
- Date: 1994
- Subjects: Vitamin C -- Therapeutic use Cancer -- Research
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:4049 , http://hdl.handle.net/10962/d1004110
- Description: Considerable interest exists with regard to the putative therapeutic role of ascorbic acid in various conditions. A condition which has received much attention is cancer, as it is reported that ascorbic acid may be a prophylactic against cancer development. However, the actual involvement of ascorbic acid, an oxidizing/reducing agent, in the development and progression of tumours is presently a subject of much speculation. This study initially addressed the effect of ascorbic acid supplementation over a nutritional concentration range (0 - 100 μg/ml) on the in vitro growth of non-malignant LLCMK and malignant B16 cells. Ascorbic acid supplementation of these two cell types resulted in an overall decrease in the growth of both types of cells. The actual inhibitory mechanism of ascorbic acid on cell growth was not clear. Further study attempted to define and explain a mechanism responsible for this effect. Ascorbic acid has a role in the maintenance of tissue integrity and host defences, thus providing a rational basis for examining its relationship to cancer. Ascorbic acid is lcnown to be essential for the structural integrity of the intercellular matrix of the cells, the latter being a complex aqueous gel containing, amongst other compounds, fats and prostaglandins. Fats and prostaglandins have diverse effects on. membrane stability, enzyme activity and secondary messengers within cells. Hence, this study investigated the effect of ascorbic acid supplementation on certain enzymes and secondary metabolites within the cells, which had the potential to be involved in the control of cell growth. Throughout this study, emphasis was placed on the Bl6 melanoma cells as ascorbic acid supplementation did not significantly affect levels of secondary metabolites within the non-malignant LLCMK cells. Ascorbic acid supplementation of the B16 cells resulted in significant increases in adenylate cyclase activity and cyclic adenosine monophosphate levels, witb a significant decrease in Bl6 cell growth in that particular experiment. As cyclic adenosine monophosphate has a regulatory role in the cell cycle, this study suggested that the inhibitory effect of ascorbic acid supplementation on cell growth was mediated tbrough a final effect provided by the second messenger, cyclic adenosine monophosphate. However, clarification of tbe mechanism of tbe effect of ascorbic acid on adenylate cyclase activity was required. Hence, a further study investigated prostaglandin E₂ levels, as tbese affect adenylate cyclase activity. Prostaglandin E₂ levels were also found to be inversely related to Bl6 cell growth with ascorbic acid supplementation. It thus appeared tbat adenylate cyclase activity was dependent on prostaglandin E₂ levels in the B16 cells, and further study showed that tbis was indeed the case. Here, higher levels of prostaglandin E₂ supplementation of the Bl6 cells inhibited cell growth significantly and also significantly increased adenylate cyclase activity. Arachidonic acid is the precursor of prostaglandin E₂. In the presence of ascorbic acid supplementation, the percentage arachidonic acid composition of the Bl6 cells was inversely correlated with cell growth. Hence, prostaglandin E₂ levels in ascorbic acid supplemented B16 cells appeared dependent on tbe amount of precursor present. This was confirmed when Bl6 cells were supplemented with arachidonic acid. The latter had an inhibitory effect on Bl6 cell growth and also stimulated prostaglandin E₂ production. The cause of tbe inverse relationship between B16 cell growth and arachidonic acid composition with ascorbic acid supplementation was furtber investigated and found to be dependent on tbe uptake of arachidonic acid and other essential fatty acids from tbe medium. The enzymes phospholipase A₂ delta-5 and delta-6-desaturase, and elongase which could influence arachidonic acid levels were not affected to any extent by ascorbic acid supplementation and therefore did not influence the inverse relationship between B16 cell growth and arachidonic acid. Hence, it can be concluded that the effect of ascorbic acid supplementation on the BI6 cells is mediated, in part at least, by cyclic adenosine monophosphate. However, this is not the result of a direct effect of ascorbic acid supplementation. The initial effect of ascorbic acid supplementation concerns fatty acid - in particular arachidonic acid - uptake from the medium, with subsequent cascade effects On secondary metabolites, ultimately affecting the cellular levels of cyclic adenosine monophosphate.
- Full Text:
- Date Issued: 1994
- Authors: Stoll, Karin Elisabeth
- Date: 1994
- Subjects: Vitamin C -- Therapeutic use Cancer -- Research
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:4049 , http://hdl.handle.net/10962/d1004110
- Description: Considerable interest exists with regard to the putative therapeutic role of ascorbic acid in various conditions. A condition which has received much attention is cancer, as it is reported that ascorbic acid may be a prophylactic against cancer development. However, the actual involvement of ascorbic acid, an oxidizing/reducing agent, in the development and progression of tumours is presently a subject of much speculation. This study initially addressed the effect of ascorbic acid supplementation over a nutritional concentration range (0 - 100 μg/ml) on the in vitro growth of non-malignant LLCMK and malignant B16 cells. Ascorbic acid supplementation of these two cell types resulted in an overall decrease in the growth of both types of cells. The actual inhibitory mechanism of ascorbic acid on cell growth was not clear. Further study attempted to define and explain a mechanism responsible for this effect. Ascorbic acid has a role in the maintenance of tissue integrity and host defences, thus providing a rational basis for examining its relationship to cancer. Ascorbic acid is lcnown to be essential for the structural integrity of the intercellular matrix of the cells, the latter being a complex aqueous gel containing, amongst other compounds, fats and prostaglandins. Fats and prostaglandins have diverse effects on. membrane stability, enzyme activity and secondary messengers within cells. Hence, this study investigated the effect of ascorbic acid supplementation on certain enzymes and secondary metabolites within the cells, which had the potential to be involved in the control of cell growth. Throughout this study, emphasis was placed on the Bl6 melanoma cells as ascorbic acid supplementation did not significantly affect levels of secondary metabolites within the non-malignant LLCMK cells. Ascorbic acid supplementation of the B16 cells resulted in significant increases in adenylate cyclase activity and cyclic adenosine monophosphate levels, witb a significant decrease in Bl6 cell growth in that particular experiment. As cyclic adenosine monophosphate has a regulatory role in the cell cycle, this study suggested that the inhibitory effect of ascorbic acid supplementation on cell growth was mediated tbrough a final effect provided by the second messenger, cyclic adenosine monophosphate. However, clarification of tbe mechanism of tbe effect of ascorbic acid on adenylate cyclase activity was required. Hence, a further study investigated prostaglandin E₂ levels, as tbese affect adenylate cyclase activity. Prostaglandin E₂ levels were also found to be inversely related to Bl6 cell growth with ascorbic acid supplementation. It thus appeared tbat adenylate cyclase activity was dependent on prostaglandin E₂ levels in the B16 cells, and further study showed that tbis was indeed the case. Here, higher levels of prostaglandin E₂ supplementation of the Bl6 cells inhibited cell growth significantly and also significantly increased adenylate cyclase activity. Arachidonic acid is the precursor of prostaglandin E₂. In the presence of ascorbic acid supplementation, the percentage arachidonic acid composition of the Bl6 cells was inversely correlated with cell growth. Hence, prostaglandin E₂ levels in ascorbic acid supplemented B16 cells appeared dependent on tbe amount of precursor present. This was confirmed when Bl6 cells were supplemented with arachidonic acid. The latter had an inhibitory effect on Bl6 cell growth and also stimulated prostaglandin E₂ production. The cause of tbe inverse relationship between B16 cell growth and arachidonic acid composition with ascorbic acid supplementation was furtber investigated and found to be dependent on tbe uptake of arachidonic acid and other essential fatty acids from tbe medium. The enzymes phospholipase A₂ delta-5 and delta-6-desaturase, and elongase which could influence arachidonic acid levels were not affected to any extent by ascorbic acid supplementation and therefore did not influence the inverse relationship between B16 cell growth and arachidonic acid. Hence, it can be concluded that the effect of ascorbic acid supplementation on the BI6 cells is mediated, in part at least, by cyclic adenosine monophosphate. However, this is not the result of a direct effect of ascorbic acid supplementation. The initial effect of ascorbic acid supplementation concerns fatty acid - in particular arachidonic acid - uptake from the medium, with subsequent cascade effects On secondary metabolites, ultimately affecting the cellular levels of cyclic adenosine monophosphate.
- Full Text:
- Date Issued: 1994
Bioaccumulation of metal cations by yeast and yeast cell components
- Authors: Brady, Dean
- Date: 1993
- Subjects: Yeast , Yeast fungi -- Biotechnology , Cations , Metal ions
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:4046 , http://hdl.handle.net/10962/d1004107 , Yeast , Yeast fungi -- Biotechnology , Cations , Metal ions
- Description: The aim of the project was to determine whether a by-product of industrial fermentations, Saccharomyces cerevisiae, could be utilized to bioaccumulate heavy metal cations and to partially define the mechanism of accumulation. S. cerevisiae cells were found to be capable of accumulating Cu²⁺in a manner that was proportional to the external Cu²⁺ concentration and inversely proportional to the concentration of biomass. The accumulation process was only minimally affected by temperature variations between 5 and 40°C or high ambient concentrations of sodium chloride. The accumulation process was however considerably affected by variations in pH, bioaccumulation being most efficient at pH 5 - 9 but becoming rapidly less so at either extreme of pH. Selection for copper resistant or tolerant yeast diminished the yeast's capacity for Cu²⁺ accumulation. For this and other reasons the development of heavy metal tolerance in yeasts was deemed to be generally counterproductive to heavy metal bioaccumulation. The yeast biomass was also capable of accumulating other heavy metal cations such as c0²⁺ or Cd²⁺. The yeast biomass could be harvested after bioaccumulation by tangential filtration methods, or alternatively could be packed into hollow fibre microfilter membrane cartridges and used as a fixed-bed bioaccumulator. By immobilizing the yeast in polyacrylamide gel and packing this material into columns, cu²⁺, C0²⁺ or Cd²⁺ could be removed from influent aqueous solutions yielding effluents with no detectable heavy metal, until breakthrough point was reached. This capacity was hypothesized to be a function of numerous "theoretical plates of equilibrium" within the column. The immobilized biomass could be eluted with EDTA and recycled for further bioaccumulation processes with minor loss of bioaccumulation capacity. Yeast cells were fractionated to permit identification of the major cell fractions and molecular components responsible for metal binding. Isolation of the yeast cell walls permitted investigation of their role in heavy metal accumulation. Although the amino groups of chitosan and proteins, the carboxyl groups of proteins, and the phosphate groups of phosphomannans were found to be efficient groups for the accumulation of copper, the less effective hydroxyl groups of the carbohydrate polymers (glucans and mannans) had a similar overall capacity for copper accumulation owing to their predominance in the yeast cell wall. The outer (protein-mannan) layer of the yeast cell wall was found to be a better Cu²⁺ chelator than the inner (chitinglucan) layer. It appeared that the physical condition of the cell wall may be more important than the individual macromolecular components of the cell wall in metal accumulation. It was apparent that the cell wall was the major, if not the sole contributor to heavy metal accumulation at low ambient heavy metal concentrations. At higher ambient metal concentrations the cytosol and vacuole become involved in bioaccumulation. Copper and other metals caused rapid loss of 70% of the intracellular potassium, implying permeation of the plasma membrane. This was followed by a slower "leakage" of magnesium from the vacuole which paralleled Cu²⁺ accumulation, suggesting that it may represent some form of ion-exchange. An intracellular copper chelating agent of approximately 2 kDalton molecular mass was isolated from copper tolerant yeast. This chelator was not a metallothionein and bound relatively low molar equivalents of copper compared to those reported for metallothionein. Treatment of the biomass with hot alkali yielded two biosorbents, one soluble (which could be used as a heavy metal flocculent), and an insoluble biosorbent which could be formed into a granular product to be used in fixed-bed biosorption columns. The granular biosorbent could accumulate a wide range of heavy metal cations in a semispecific manner and could be stored in a dehydrated form indefinitely, and rehydrated when required. Bioaccumulation by live algae was investigated as an alternative to yeast based processes. Various strains of algae, of which Scenedesmus and Selenastrum were the most effective, were found to be capable of accumulating heavy metals such as Cu²⁺, Pb²⁺ and Cr³⁺.
- Full Text:
- Date Issued: 1993
- Authors: Brady, Dean
- Date: 1993
- Subjects: Yeast , Yeast fungi -- Biotechnology , Cations , Metal ions
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:4046 , http://hdl.handle.net/10962/d1004107 , Yeast , Yeast fungi -- Biotechnology , Cations , Metal ions
- Description: The aim of the project was to determine whether a by-product of industrial fermentations, Saccharomyces cerevisiae, could be utilized to bioaccumulate heavy metal cations and to partially define the mechanism of accumulation. S. cerevisiae cells were found to be capable of accumulating Cu²⁺in a manner that was proportional to the external Cu²⁺ concentration and inversely proportional to the concentration of biomass. The accumulation process was only minimally affected by temperature variations between 5 and 40°C or high ambient concentrations of sodium chloride. The accumulation process was however considerably affected by variations in pH, bioaccumulation being most efficient at pH 5 - 9 but becoming rapidly less so at either extreme of pH. Selection for copper resistant or tolerant yeast diminished the yeast's capacity for Cu²⁺ accumulation. For this and other reasons the development of heavy metal tolerance in yeasts was deemed to be generally counterproductive to heavy metal bioaccumulation. The yeast biomass was also capable of accumulating other heavy metal cations such as c0²⁺ or Cd²⁺. The yeast biomass could be harvested after bioaccumulation by tangential filtration methods, or alternatively could be packed into hollow fibre microfilter membrane cartridges and used as a fixed-bed bioaccumulator. By immobilizing the yeast in polyacrylamide gel and packing this material into columns, cu²⁺, C0²⁺ or Cd²⁺ could be removed from influent aqueous solutions yielding effluents with no detectable heavy metal, until breakthrough point was reached. This capacity was hypothesized to be a function of numerous "theoretical plates of equilibrium" within the column. The immobilized biomass could be eluted with EDTA and recycled for further bioaccumulation processes with minor loss of bioaccumulation capacity. Yeast cells were fractionated to permit identification of the major cell fractions and molecular components responsible for metal binding. Isolation of the yeast cell walls permitted investigation of their role in heavy metal accumulation. Although the amino groups of chitosan and proteins, the carboxyl groups of proteins, and the phosphate groups of phosphomannans were found to be efficient groups for the accumulation of copper, the less effective hydroxyl groups of the carbohydrate polymers (glucans and mannans) had a similar overall capacity for copper accumulation owing to their predominance in the yeast cell wall. The outer (protein-mannan) layer of the yeast cell wall was found to be a better Cu²⁺ chelator than the inner (chitinglucan) layer. It appeared that the physical condition of the cell wall may be more important than the individual macromolecular components of the cell wall in metal accumulation. It was apparent that the cell wall was the major, if not the sole contributor to heavy metal accumulation at low ambient heavy metal concentrations. At higher ambient metal concentrations the cytosol and vacuole become involved in bioaccumulation. Copper and other metals caused rapid loss of 70% of the intracellular potassium, implying permeation of the plasma membrane. This was followed by a slower "leakage" of magnesium from the vacuole which paralleled Cu²⁺ accumulation, suggesting that it may represent some form of ion-exchange. An intracellular copper chelating agent of approximately 2 kDalton molecular mass was isolated from copper tolerant yeast. This chelator was not a metallothionein and bound relatively low molar equivalents of copper compared to those reported for metallothionein. Treatment of the biomass with hot alkali yielded two biosorbents, one soluble (which could be used as a heavy metal flocculent), and an insoluble biosorbent which could be formed into a granular product to be used in fixed-bed biosorption columns. The granular biosorbent could accumulate a wide range of heavy metal cations in a semispecific manner and could be stored in a dehydrated form indefinitely, and rehydrated when required. Bioaccumulation by live algae was investigated as an alternative to yeast based processes. Various strains of algae, of which Scenedesmus and Selenastrum were the most effective, were found to be capable of accumulating heavy metals such as Cu²⁺, Pb²⁺ and Cr³⁺.
- Full Text:
- Date Issued: 1993
Algal biotechnology and the beneficiation of saline effluent wastes
- Authors: Rose, P D (Peter Dale)
- Date: 1992
- Subjects: Algae -- Biotechnology , Algae culture , Tanneries -- Waste disposal
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:4135 , http://hdl.handle.net/10962/d1015967
- Description: Saline deterioration in the South African public water system has been documented and disposal of brine wastes has been identified as part of the problem. The broad aim of this research programme was to undertake an initial technical study to evaluate the feasibility of integrating algal biotechnology into a disposal function for these wastes. A demonstration of utility in the form of products and waste treatment could produce a beneficiation of saline effluents and provide incentives necessary to deal with the disposal issue. The study attempted to demonstrate a synthesis between the two main thrusts in algal biotechnology that have produced large-scale practical applications - stable, predictable algal production in saline media and the cost effective High Rate Oxidation Ponding (HROP) process for incorporating algal production into a waste treatment function. Tannery organic saline effluents and the biotechnology of Dunaliella salina culture producing β- carotene were chosen as paradigms for the study. 1. The alga was shown to grow in certain tannery effluents producing enhanced biomass yields compared to defined inorganic medium cultivation. The potential for amino acid or protein supplementation of defmed culture media was noted. 2. A reduction in organic load simultaneous with the growth of D.salina was recorded in laboratory-scale simulations of the HROP process. Rates similar to the fresh water HROP equivalent were demonstrated. 3. These results suggested the uptake and storage of organic nitrogen by D.salina. The consequent inhibition of β-carotene accumulation by the organism presented a potentially insurmountable obstacle to the feasibility of β-carotene production in this medium. Uptake and release of organic compounds, previously demonstrated in phytoplankton and other micro-algae, was confirmed in this study for D.salina. The evidence acquired indicated the internalization of both glycine and bovine serum albumin. An ultrastructural study demonstrated mechanisms by which this process might occur. 4. The release of substantial quantities of glycerol was shown. A mechanism whereby D. salina may use this to regulate ammonia availability via control of its associated bacterial population was observed. Glycerol release was identified as presenting an application in treating refractory organic wastes, such as secondary sewage sludges, by elevating C:N ratios. This could demonstrate a significant utility for brine waste impoundments. 5. A multistage production process was proposed to deal with the problem of β-carotene inhibition by separation of the growth and metabolite accumulation functions into separate unit operations. It was shown in this study that the stress of nitrogen deficiency combined with high salinity provides for effectiveβ-carotene accumulation under the conditions of low illumination that pertain in dense cultures. Subjected to these conditions effluent-grown cells show delayed but unimpaired {j-carotene accumulation. 6. A role for the plant hormone abscisic acid in mediating the stress response was demonstrated in D.salina. Fluorescence induction studies suggested the presence of a signalling process forming part of a sensitivity control mechanism. Stress induction of β-carotene accumulation could occur through four clearly defined stages. Potential was identified for using this response as a physiological probe for monitoring and regulating the stress induction process. 7. The multistage processing concept requires effective algal cell separation technology. The use of cross-flow ultrafiltration and diafiltration with a polyethersulfone tubular membrane system was demonstrated as an effective process for the recovery and washing of D. salina. Cell concentrates were produced in a viable form. 8. Process designs incorporating the findings of the research programme are presented demonstrating how effluent and organic waste treatment functions may be combined with the production of D.salina and its products. Application of the multi-stage processing concept to β-carotene production in a defined medium process was identified as offering a potential four-fold yield enhancement. This could have a significant impact on a high cost, marginal algal biotechnology process. Aspects of novelty have been claimed in provisional patents applications. A provisional demonstration of the feasibility of D.salina production in tannery effluent indicates that algal biotechnology may provide a utility for, and hence the beneficiation of saline effluent wastes.
- Full Text:
- Date Issued: 1992
- Authors: Rose, P D (Peter Dale)
- Date: 1992
- Subjects: Algae -- Biotechnology , Algae culture , Tanneries -- Waste disposal
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:4135 , http://hdl.handle.net/10962/d1015967
- Description: Saline deterioration in the South African public water system has been documented and disposal of brine wastes has been identified as part of the problem. The broad aim of this research programme was to undertake an initial technical study to evaluate the feasibility of integrating algal biotechnology into a disposal function for these wastes. A demonstration of utility in the form of products and waste treatment could produce a beneficiation of saline effluents and provide incentives necessary to deal with the disposal issue. The study attempted to demonstrate a synthesis between the two main thrusts in algal biotechnology that have produced large-scale practical applications - stable, predictable algal production in saline media and the cost effective High Rate Oxidation Ponding (HROP) process for incorporating algal production into a waste treatment function. Tannery organic saline effluents and the biotechnology of Dunaliella salina culture producing β- carotene were chosen as paradigms for the study. 1. The alga was shown to grow in certain tannery effluents producing enhanced biomass yields compared to defined inorganic medium cultivation. The potential for amino acid or protein supplementation of defmed culture media was noted. 2. A reduction in organic load simultaneous with the growth of D.salina was recorded in laboratory-scale simulations of the HROP process. Rates similar to the fresh water HROP equivalent were demonstrated. 3. These results suggested the uptake and storage of organic nitrogen by D.salina. The consequent inhibition of β-carotene accumulation by the organism presented a potentially insurmountable obstacle to the feasibility of β-carotene production in this medium. Uptake and release of organic compounds, previously demonstrated in phytoplankton and other micro-algae, was confirmed in this study for D.salina. The evidence acquired indicated the internalization of both glycine and bovine serum albumin. An ultrastructural study demonstrated mechanisms by which this process might occur. 4. The release of substantial quantities of glycerol was shown. A mechanism whereby D. salina may use this to regulate ammonia availability via control of its associated bacterial population was observed. Glycerol release was identified as presenting an application in treating refractory organic wastes, such as secondary sewage sludges, by elevating C:N ratios. This could demonstrate a significant utility for brine waste impoundments. 5. A multistage production process was proposed to deal with the problem of β-carotene inhibition by separation of the growth and metabolite accumulation functions into separate unit operations. It was shown in this study that the stress of nitrogen deficiency combined with high salinity provides for effectiveβ-carotene accumulation under the conditions of low illumination that pertain in dense cultures. Subjected to these conditions effluent-grown cells show delayed but unimpaired {j-carotene accumulation. 6. A role for the plant hormone abscisic acid in mediating the stress response was demonstrated in D.salina. Fluorescence induction studies suggested the presence of a signalling process forming part of a sensitivity control mechanism. Stress induction of β-carotene accumulation could occur through four clearly defined stages. Potential was identified for using this response as a physiological probe for monitoring and regulating the stress induction process. 7. The multistage processing concept requires effective algal cell separation technology. The use of cross-flow ultrafiltration and diafiltration with a polyethersulfone tubular membrane system was demonstrated as an effective process for the recovery and washing of D. salina. Cell concentrates were produced in a viable form. 8. Process designs incorporating the findings of the research programme are presented demonstrating how effluent and organic waste treatment functions may be combined with the production of D.salina and its products. Application of the multi-stage processing concept to β-carotene production in a defined medium process was identified as offering a potential four-fold yield enhancement. This could have a significant impact on a high cost, marginal algal biotechnology process. Aspects of novelty have been claimed in provisional patents applications. A provisional demonstration of the feasibility of D.salina production in tannery effluent indicates that algal biotechnology may provide a utility for, and hence the beneficiation of saline effluent wastes.
- Full Text:
- Date Issued: 1992
Essential fatty acids and ascorbic acid- interactions and effects on melanoma growth
- Authors: Gardiner, Neil Stockenstrom
- Date: 1990
- Subjects: Fatty acids , Melanoma , Mice -- Diseases
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:4549 , http://hdl.handle.net/10962/d1018230
- Description: The present study was carried out to determine the effects and possible mechanisms of action of the essential fatty acids (EFAs) (linoleic acid (LA), gamma-linolenic acid (GLA) and arachidonic acid (AA)) and ascorbic acid (Asc) on BL6 murine melanoma growth in cell culture and in mice. Interactions between the nutrients in influencing melanoma growth as well as possible mechanisms of the interactions were also examined in the above systems. Cell culture studies revealed that all three EFAs (0-SOμg/ml) and Asc (0-200μg/ml) significantly inhibited melanoma growth at the concentrations used. The EF As were also found to significantly inhibit growth, although to a lesser extent than BL6 cells, of monkey kidney (LLCMK) cells which were used as a non-malignant control cell line. Asc in contrast was found not to inhibit growth of these cells. Supplementation of Asc (lOO)μg/ml) to EFA containing (0-50μg/ml) medium was found to significantly increase inhibition of cell growth in both cell lines, and in the BL6 cells in particular, after taking into account the growth inhibitory effects of Asc in the absence of EFAs. The mechanism of cell growth inhibition by the EF As appeared to involve lipid peroxidation but not enhanced prostaglandin (PG) or leukotriene (LT) synthesis. While Asc was found to increase both lipid peroxidation and PG synthesis in the cells, these mechanisms and enhanced LT synthesis did not appear to have played a role in the inhibition of cell growth by Asc or in the growth inhibitory interaction between Asc and the EF As. In vivo studies revealed that diets containing essential or polyunsaturated fatty acids (EFAs/PUFAs) in the form of vegetable oils, and in particular GLA in the form of evening primrose oil, significantly promoted melanoma growth in mice when compared with an EFA/PUFA free diet containing predominantly saturated fats (SF). Supplementary dietary Asc in contrast was found to significantly inhibit melanoma growth in mice fed EFA/PUFA, and in particular GLA, containing diets but not in mice fed SF cont~g diets. This result appears to indicate the occurrence of an interaction between the two nutrients. Ul The mechanism of tumour promotion by the EP As/PUP As did not appear to have involved enhanced PG or LT synthesis or lipid peroxidation. Since dietary EPA/PUPA manipulation was found to significantly alter the EPA content of tissues, including the melanomas, the mechanism of tumour promotion may have involved changes in the EPA composition of the tumour cells. While supplementary Asc was found to significantly increase the Asc content of certain tissues, including the melanomas, which may have played a role in tumour growth inhibition by Asc, it was found not to affect the EPA content of tissues. Enhanced PG or LT synthesis and lipid perox:idation did not appear to have been involved in the tumour growth inhibitory interaction between Asc and the EP As/PUP As. THe activity of the enzyme delta-6-desaturase, a key enzyme in EF A metabolism which catalyses the desaturation of LA to GLA, and the influence of Asc on activity of the enzyme were also examined. The cultured cells, and BL6 cells in particular, were found to contain significant activity of the enzyme. Whereas murine liver microsomal fractions were found to contain delta-6-desaturase activity, microsomes from melanomas grown in mice were found to lack activity of the enzyme. The significant tumour promoting effects of the GLA containing EPO diet may have been the result of the lack of delta-6-desaturase activity in tumour cells grown in mice. Asc was found to stimulate activity of the enzyme in cultured BL6 cells but not in LLCM.K cells, while dietary Asc and EF A/PUP A manipulation did not influence activity of the enzyme in microsomal fractions. This study has confirmed previous reports of the in vivo tumour promoting effects of dietary EP As/PUP As and the tumour growth inhibitory effects of Asc. The in vitro cell growth inhibitory effects of Asc and the EP As also confirm the results of previous reports. Previous studies investigating possible interactions between Asc and EP As/PUP As in influencing tumour cell growth could not be located in the relevant literature. This study may therefore be one of the first investigations of any such interaction between these nutrients in tumour cells. While this study was not able to identify the mechanisms involved in the different tumour promoting or tumour growth inhibitory effects of the two nutrients in the two systems, it did eliminate a number of potential mechanisms. The results of this study also emphasise the difficulty of attempting to compare the results of in vitro and in vivo studies.
- Full Text:
- Date Issued: 1990
- Authors: Gardiner, Neil Stockenstrom
- Date: 1990
- Subjects: Fatty acids , Melanoma , Mice -- Diseases
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:4549 , http://hdl.handle.net/10962/d1018230
- Description: The present study was carried out to determine the effects and possible mechanisms of action of the essential fatty acids (EFAs) (linoleic acid (LA), gamma-linolenic acid (GLA) and arachidonic acid (AA)) and ascorbic acid (Asc) on BL6 murine melanoma growth in cell culture and in mice. Interactions between the nutrients in influencing melanoma growth as well as possible mechanisms of the interactions were also examined in the above systems. Cell culture studies revealed that all three EFAs (0-SOμg/ml) and Asc (0-200μg/ml) significantly inhibited melanoma growth at the concentrations used. The EF As were also found to significantly inhibit growth, although to a lesser extent than BL6 cells, of monkey kidney (LLCMK) cells which were used as a non-malignant control cell line. Asc in contrast was found not to inhibit growth of these cells. Supplementation of Asc (lOO)μg/ml) to EFA containing (0-50μg/ml) medium was found to significantly increase inhibition of cell growth in both cell lines, and in the BL6 cells in particular, after taking into account the growth inhibitory effects of Asc in the absence of EFAs. The mechanism of cell growth inhibition by the EF As appeared to involve lipid peroxidation but not enhanced prostaglandin (PG) or leukotriene (LT) synthesis. While Asc was found to increase both lipid peroxidation and PG synthesis in the cells, these mechanisms and enhanced LT synthesis did not appear to have played a role in the inhibition of cell growth by Asc or in the growth inhibitory interaction between Asc and the EF As. In vivo studies revealed that diets containing essential or polyunsaturated fatty acids (EFAs/PUFAs) in the form of vegetable oils, and in particular GLA in the form of evening primrose oil, significantly promoted melanoma growth in mice when compared with an EFA/PUFA free diet containing predominantly saturated fats (SF). Supplementary dietary Asc in contrast was found to significantly inhibit melanoma growth in mice fed EFA/PUFA, and in particular GLA, containing diets but not in mice fed SF cont~g diets. This result appears to indicate the occurrence of an interaction between the two nutrients. Ul The mechanism of tumour promotion by the EP As/PUP As did not appear to have involved enhanced PG or LT synthesis or lipid peroxidation. Since dietary EPA/PUPA manipulation was found to significantly alter the EPA content of tissues, including the melanomas, the mechanism of tumour promotion may have involved changes in the EPA composition of the tumour cells. While supplementary Asc was found to significantly increase the Asc content of certain tissues, including the melanomas, which may have played a role in tumour growth inhibition by Asc, it was found not to affect the EPA content of tissues. Enhanced PG or LT synthesis and lipid perox:idation did not appear to have been involved in the tumour growth inhibitory interaction between Asc and the EP As/PUP As. THe activity of the enzyme delta-6-desaturase, a key enzyme in EF A metabolism which catalyses the desaturation of LA to GLA, and the influence of Asc on activity of the enzyme were also examined. The cultured cells, and BL6 cells in particular, were found to contain significant activity of the enzyme. Whereas murine liver microsomal fractions were found to contain delta-6-desaturase activity, microsomes from melanomas grown in mice were found to lack activity of the enzyme. The significant tumour promoting effects of the GLA containing EPO diet may have been the result of the lack of delta-6-desaturase activity in tumour cells grown in mice. Asc was found to stimulate activity of the enzyme in cultured BL6 cells but not in LLCM.K cells, while dietary Asc and EF A/PUP A manipulation did not influence activity of the enzyme in microsomal fractions. This study has confirmed previous reports of the in vivo tumour promoting effects of dietary EP As/PUP As and the tumour growth inhibitory effects of Asc. The in vitro cell growth inhibitory effects of Asc and the EP As also confirm the results of previous reports. Previous studies investigating possible interactions between Asc and EP As/PUP As in influencing tumour cell growth could not be located in the relevant literature. This study may therefore be one of the first investigations of any such interaction between these nutrients in tumour cells. While this study was not able to identify the mechanisms involved in the different tumour promoting or tumour growth inhibitory effects of the two nutrients in the two systems, it did eliminate a number of potential mechanisms. The results of this study also emphasise the difficulty of attempting to compare the results of in vitro and in vivo studies.
- Full Text:
- Date Issued: 1990
Isolation of and interaction of nutrients with the linoleoyl-coa desaturase complex
- Authors: Perkins, Denise Mary
- Date: 1990
- Subjects: Cell proliferation , Cancer cells -- Growth -- Regulation , Enzymes -- Purification
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:4558 , http://hdl.handle.net/10962/d1018264
- Description: The termina1 enzyme in the linoleoyl-CoA desaturase enzyme complex, delta-6-desaturase was implied in the control of cell proliferation in cancer cells. One of the aims of this study was to isolate the terminal enzyme. It was decided that in order to isolate this enzyme it was first necessary to isolate the entire complex and then to enzymatically solubilise the first two components of the complex i e cytochrome b5 reductase and cytochrome b5 from the complex resulting in a pure delta-6-desaturase . The first two components were isolated and purified using simplified and easily reproducible methodologies which could be utilised in the final purification of delta-6- desaturase. The entire enzyme complex, linoleoyl-CoA desaturase was also isolated in a pure form and this pure complex was used to attempt to isolate delta-6-desaturase. The terminal enzyme was isolated with some cytochrome b5 still bound to it. The methods used had proven to be successful and with some modifications should yield a pure enzyme. Zinc and GLA were known to play a role in the inhibition of cancer cell proliferation and zinc was hypothesised to inhibit cell growth by stimulating the activity of the linoleoyl-CoA desaturase enzyme complex which is involved in the regulation of cell proliferation. GLA is the product of the reaction that this enzyme complex catalyses and GLA has been shown to inhibit cancer ce ll growth. The effect of GLA on cell growth and linoleoyl-CoA desaturase activity was thus investigated. Results showed that both zinc and GLA inhibited cell growth and that the combined addition of zinc and GLA generally resulted in the inhibition of cell growth and the activation of linoleoyl-CoA desaturase activity in the BL-6 cells while having a less pronounced effect on the LLCMK cells. The results of this study support the hypothesis that zinc may be a cofactor of linoleoyl-CoA desaturase.
- Full Text:
- Date Issued: 1990
- Authors: Perkins, Denise Mary
- Date: 1990
- Subjects: Cell proliferation , Cancer cells -- Growth -- Regulation , Enzymes -- Purification
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:4558 , http://hdl.handle.net/10962/d1018264
- Description: The termina1 enzyme in the linoleoyl-CoA desaturase enzyme complex, delta-6-desaturase was implied in the control of cell proliferation in cancer cells. One of the aims of this study was to isolate the terminal enzyme. It was decided that in order to isolate this enzyme it was first necessary to isolate the entire complex and then to enzymatically solubilise the first two components of the complex i e cytochrome b5 reductase and cytochrome b5 from the complex resulting in a pure delta-6-desaturase . The first two components were isolated and purified using simplified and easily reproducible methodologies which could be utilised in the final purification of delta-6- desaturase. The entire enzyme complex, linoleoyl-CoA desaturase was also isolated in a pure form and this pure complex was used to attempt to isolate delta-6-desaturase. The terminal enzyme was isolated with some cytochrome b5 still bound to it. The methods used had proven to be successful and with some modifications should yield a pure enzyme. Zinc and GLA were known to play a role in the inhibition of cancer cell proliferation and zinc was hypothesised to inhibit cell growth by stimulating the activity of the linoleoyl-CoA desaturase enzyme complex which is involved in the regulation of cell proliferation. GLA is the product of the reaction that this enzyme complex catalyses and GLA has been shown to inhibit cancer ce ll growth. The effect of GLA on cell growth and linoleoyl-CoA desaturase activity was thus investigated. Results showed that both zinc and GLA inhibited cell growth and that the combined addition of zinc and GLA generally resulted in the inhibition of cell growth and the activation of linoleoyl-CoA desaturase activity in the BL-6 cells while having a less pronounced effect on the LLCMK cells. The results of this study support the hypothesis that zinc may be a cofactor of linoleoyl-CoA desaturase.
- Full Text:
- Date Issued: 1990
A possible mechanism for enzymic depilation of skins
- Authors: Brady, Dean
- Date: 1989
- Subjects: Chemistry, Technical , Tanning
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:3877 , http://hdl.handle.net/10962/d1001611
- Description: Streptomyces fradiae is a bacterium which has been previously found to produce extracellular enzymes which are capable of wool degradation and skin depilation. Streptomyces fradiae 3739 and other strains of Streptomyces were found in this study to be able to degrade a keratin source (wool) to a considerable degree. However according to the evidence of SEM micrographs presented here the highly keratinised spindle cells of the paracortex are fairly resistant to protease attack, and it is the cementation material which binds these cells together which is initially degraded by the proteases. A large degree of correlation was found with the strains of Streptomyces studied, between the ability of the individual strains to degrade wool and the ability of their extracellular proteases to reduce the depilation load of sheepskins. With further analysis S. fradiae 3739 was found to produce at least one amylase and four or more proteases. The proteases as a group had maximal proteolytic activity in the 8.0-9.0 pH unit range, and were considerably thermostabilised by the inclusion of calcium ions into the reaction solution. The protease group was found to cause depilation of merino sheepskins. For comparative purposes a protease produced by a strain of Proteus vulgaris isolated from a staling hide with hair slip (natural depilation) was studied. The protease activity was maximal in the alkaline region between 8.0-9.0 pH units. Tbe protease appeared to be a single enzyme with a molecular mass of approximately 44 000 daltons. The protease was maximally active at 40°C, although it was only thermostable to 30°C. The enzyme was ineffectual as a depilant except when the skin was pre-treated with a strong alkali, preferably including sodium sulphite in the protease preparation. One of the most important differences between the extracellular proteases of S. fradiae and P. vulgaris was that the former were greater in variety and caused a greater decrease in the depilation load of sheepskins than the latter. Further research with mixtures of commercial proteases provided evidence that a synergistic depilatory effect occurs when proteases of complementary bond specificities are used in conjunction in enzymic depilatory preparations. Some form of strong alkali treatment of skins was found to be necessary to produce leather of the prerequisite quality when the skin was depilated by proteases, otherwise the skin was found to be depleted and stiff. Calcium hydroxide alone was found to be inadequate for this task, probably owing to the fact that it is less alkaline than the lime-sulphide mixture. The calcium hydroxide (lime) must therefore be used in conjunction with sodium hydroxide (which makes the solution as alkaline as that of the lime-sulphide solution) to produce leather comparable to that produced by the lime sulphide treatment. A combination of the information provided by the present research and that gleaned from the relevent literature allows for the construction of a model to represent the possible mechanism of enzymic depilation of skins, in which depilation is caused by the disruption of the basement membrane at the dermal-epidermal junction by the degradation of its constituent molecular components by general proteases, resulting in the removal of the epidermis and its associated wool or hair
- Full Text:
- Date Issued: 1989
- Authors: Brady, Dean
- Date: 1989
- Subjects: Chemistry, Technical , Tanning
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:3877 , http://hdl.handle.net/10962/d1001611
- Description: Streptomyces fradiae is a bacterium which has been previously found to produce extracellular enzymes which are capable of wool degradation and skin depilation. Streptomyces fradiae 3739 and other strains of Streptomyces were found in this study to be able to degrade a keratin source (wool) to a considerable degree. However according to the evidence of SEM micrographs presented here the highly keratinised spindle cells of the paracortex are fairly resistant to protease attack, and it is the cementation material which binds these cells together which is initially degraded by the proteases. A large degree of correlation was found with the strains of Streptomyces studied, between the ability of the individual strains to degrade wool and the ability of their extracellular proteases to reduce the depilation load of sheepskins. With further analysis S. fradiae 3739 was found to produce at least one amylase and four or more proteases. The proteases as a group had maximal proteolytic activity in the 8.0-9.0 pH unit range, and were considerably thermostabilised by the inclusion of calcium ions into the reaction solution. The protease group was found to cause depilation of merino sheepskins. For comparative purposes a protease produced by a strain of Proteus vulgaris isolated from a staling hide with hair slip (natural depilation) was studied. The protease activity was maximal in the alkaline region between 8.0-9.0 pH units. Tbe protease appeared to be a single enzyme with a molecular mass of approximately 44 000 daltons. The protease was maximally active at 40°C, although it was only thermostable to 30°C. The enzyme was ineffectual as a depilant except when the skin was pre-treated with a strong alkali, preferably including sodium sulphite in the protease preparation. One of the most important differences between the extracellular proteases of S. fradiae and P. vulgaris was that the former were greater in variety and caused a greater decrease in the depilation load of sheepskins than the latter. Further research with mixtures of commercial proteases provided evidence that a synergistic depilatory effect occurs when proteases of complementary bond specificities are used in conjunction in enzymic depilatory preparations. Some form of strong alkali treatment of skins was found to be necessary to produce leather of the prerequisite quality when the skin was depilated by proteases, otherwise the skin was found to be depleted and stiff. Calcium hydroxide alone was found to be inadequate for this task, probably owing to the fact that it is less alkaline than the lime-sulphide mixture. The calcium hydroxide (lime) must therefore be used in conjunction with sodium hydroxide (which makes the solution as alkaline as that of the lime-sulphide solution) to produce leather comparable to that produced by the lime sulphide treatment. A combination of the information provided by the present research and that gleaned from the relevent literature allows for the construction of a model to represent the possible mechanism of enzymic depilation of skins, in which depilation is caused by the disruption of the basement membrane at the dermal-epidermal junction by the degradation of its constituent molecular components by general proteases, resulting in the removal of the epidermis and its associated wool or hair
- Full Text:
- Date Issued: 1989
Effects of vitamin A on tumour and untransformed cells
- Authors: De Villiers, Diane Lynette
- Date: 1988
- Subjects: Vitamin A , Vitamin A in the body , Cancer -- Prevention
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:3881 , http://hdl.handle.net/10962/d1001615
- Description: Vitamin A and its chemical analogues (retinoids) are known to play a role in the maintenance and differentiation of epithelial tissue. Retinoids have been shown to inhibit carcinogenesis in a number of tissues in experimental animals and to inhibit the growth of various untransformed and cancer cell lines in vitro. This study investigated the effect of retinyl acetate supplemented at concentrations of 1 μM, 5 μM, 10 μM and 100 μM to in vitro cultured untransformed LLCMK cells, and transformed BL-6 melanoma and human hepatoma cell lines. A small but non-significant effect of vitamin A addition on the growth of the untransformed cells was observed, while substantial inhibition of proliferation of the two tumour cell lines was found. At the cytotoxic level of 100 μM supplemented vitamin A, all three cell lines showed marked inhibition of growth. This led to an electron microscopy study to examine the ultrastructural effect of the vitamin A addition. At the low non-toxic levels of vitamin A addition (1 - 10 μM), no ultrastructural changes were observed in the untransformed cells. However, at a level of 5 μM and 10 μM vitamin A addition in the tumour cells, an increase in the size of suspected lipid droplets was observed. At the cytotoxic level of 100 μM supplemented vitamin A, large lipid droplets were very apparent, as was much cellular degeneration. This effect was more marked in the tumour cells than in the untransformed cells. The lipid nature of the droplets was confirmed by using the lipid stain, Sudan IV. In order to investigate the effect of added vitamin A at the cell surface level, an ELISA system was used to quantify the level of the cell surface glycoprotein, fibronectin, in the culture media. Vitamin A plays an important role in the production of mature fibronectin by participating in the glycosylation of the molecule. This study showed no major effect of added vitamin A on the release of fibronectin into the culture media. This did not, however, exclude the possibility that the vitamin A was involved in the production and enhanced binding of fibronectin to the cell surface, and was possibly also exerting an effect on the availability of fibronectin receptors. Further studies would, however, be required to substantiate such effects of vitamin A supplementation. No single mechanism of action of vitamin A on tumour cell growth inhibition was identified, but the possibility that at least two mechanisms exist, was suggested
- Full Text:
- Date Issued: 1988
- Authors: De Villiers, Diane Lynette
- Date: 1988
- Subjects: Vitamin A , Vitamin A in the body , Cancer -- Prevention
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:3881 , http://hdl.handle.net/10962/d1001615
- Description: Vitamin A and its chemical analogues (retinoids) are known to play a role in the maintenance and differentiation of epithelial tissue. Retinoids have been shown to inhibit carcinogenesis in a number of tissues in experimental animals and to inhibit the growth of various untransformed and cancer cell lines in vitro. This study investigated the effect of retinyl acetate supplemented at concentrations of 1 μM, 5 μM, 10 μM and 100 μM to in vitro cultured untransformed LLCMK cells, and transformed BL-6 melanoma and human hepatoma cell lines. A small but non-significant effect of vitamin A addition on the growth of the untransformed cells was observed, while substantial inhibition of proliferation of the two tumour cell lines was found. At the cytotoxic level of 100 μM supplemented vitamin A, all three cell lines showed marked inhibition of growth. This led to an electron microscopy study to examine the ultrastructural effect of the vitamin A addition. At the low non-toxic levels of vitamin A addition (1 - 10 μM), no ultrastructural changes were observed in the untransformed cells. However, at a level of 5 μM and 10 μM vitamin A addition in the tumour cells, an increase in the size of suspected lipid droplets was observed. At the cytotoxic level of 100 μM supplemented vitamin A, large lipid droplets were very apparent, as was much cellular degeneration. This effect was more marked in the tumour cells than in the untransformed cells. The lipid nature of the droplets was confirmed by using the lipid stain, Sudan IV. In order to investigate the effect of added vitamin A at the cell surface level, an ELISA system was used to quantify the level of the cell surface glycoprotein, fibronectin, in the culture media. Vitamin A plays an important role in the production of mature fibronectin by participating in the glycosylation of the molecule. This study showed no major effect of added vitamin A on the release of fibronectin into the culture media. This did not, however, exclude the possibility that the vitamin A was involved in the production and enhanced binding of fibronectin to the cell surface, and was possibly also exerting an effect on the availability of fibronectin receptors. Further studies would, however, be required to substantiate such effects of vitamin A supplementation. No single mechanism of action of vitamin A on tumour cell growth inhibition was identified, but the possibility that at least two mechanisms exist, was suggested
- Full Text:
- Date Issued: 1988
- «
- ‹
- 1
- ›
- »