The use of gabions as a tool for ecological engineering
- Authors: Seath, Jessica Lauren
- Date: 2024-04-04
- Subjects: Uncatalogued
- Language: English
- Type: Academic theses , Master's theses , text
- Identifier: http://hdl.handle.net/10962/434987 , vital:73121
- Description: Anthropogenic activities are centred in coastal ecosystems, including the development of harbours and/or marinas. The artificial structures used in coastal development typically has a different composition, orientation and level of complexity to that of natural ecosystems contributing to loss of biodiversity and increased incidence of invasive species. Ecological engineering research is attempting to identify different types of structures and materials that can increase species diversity and target species of conservation concern in coastal systems. The aim of this study was to investigate the efficacy of gabions (rock filled structures) as an ecological engineering tool by comparing community structure on these structures with pre-existing seawall structures within a small harbour and marina in South Africa (Knysna Harbour). The objectives of the study were to compare the differences in; 1) fish and; 2) colonising organisms’ diversity and composition between two artificial structures. Thirteen gabion boxes were deployed in Knysna Harbour and together with corresponding seawalls, monitored quarterly over a period of 12 months (August 2020 – August 2021) to assess taxon and functional richness, diversity, abundance and composition of fish, invertebrate and algal species. Physico-chemical characteristics of the water body were also monitored quarterly. Remote underwater video systems were used to quantify MaxN (maximum number of a fish species in the frame at any one time during each set that gives an indication of relative abundance) and identify fish species. The results of the two-way crossed ANOVAs indicated that gabion habitats recruited greater numbers and more types of fish species and from more functional groups than the seawalls, especially omnivorous and carnivorous fish. Additionally, photoquadrats were used to quantify percentage cover, counts and to identify colonising taxa. The results of the two-way crossed ANOVAs indicated that gabions hosted greater numbers of species resulting in a higher overall diversity and abundance of colonising organisms than seawalls. By contrast, the seawalls supported more types of functional groups of colonising organisms than gabions, largely due to abundances of different algal species. The results from the crossed PERMANOVAs indicated that the composition of fish and colonising organisms were vastly different from one another, and that each habitat was supporting very different functional groups. Results indicate that whilst both gabions and seawalls contain several alien species, that the ratio of native to alien species is higher in gabion habitats. Additionally, this research observed that gabion structures hosted four species listed on the IUCN Red List of Threatened Species. This study has highlighted that the use of gabions (with their natural increased complexity) could be important to consider for the future of urban coastal development in harbours such as in Knysna Harbour. Ecological engineering projects using gabions have the potential to be used in South Africa in projects that aim at increasing biodiversity in urban coastal environments. As well as increasing the settlement and abundance of habitat-forming ecosystem engineers to ensure the long-term stability of these ecosystems. They can be used both in the development of new costal development projects as well as in an ad-hoc fashion where they can be interspersed on seawalls in harbours. Additionally, gabions have the potential to be used in projects that target species of conservation concern such as the endangered Knysna Seahorse (Hippocampus capensis). It is, however, important to monitor the invasion by non-native species in future ecological engineering projects in South Africa as well as their potential for creating ecological traps (a situation in which an organism may be convinced to settle in a low-quality habitat) for certain species. , Thesis (MSc) -- Faculty of Science, Zoology and Entomology, 2024
- Full Text:
- Date Issued: 2024-04-04
- Authors: Seath, Jessica Lauren
- Date: 2024-04-04
- Subjects: Uncatalogued
- Language: English
- Type: Academic theses , Master's theses , text
- Identifier: http://hdl.handle.net/10962/434987 , vital:73121
- Description: Anthropogenic activities are centred in coastal ecosystems, including the development of harbours and/or marinas. The artificial structures used in coastal development typically has a different composition, orientation and level of complexity to that of natural ecosystems contributing to loss of biodiversity and increased incidence of invasive species. Ecological engineering research is attempting to identify different types of structures and materials that can increase species diversity and target species of conservation concern in coastal systems. The aim of this study was to investigate the efficacy of gabions (rock filled structures) as an ecological engineering tool by comparing community structure on these structures with pre-existing seawall structures within a small harbour and marina in South Africa (Knysna Harbour). The objectives of the study were to compare the differences in; 1) fish and; 2) colonising organisms’ diversity and composition between two artificial structures. Thirteen gabion boxes were deployed in Knysna Harbour and together with corresponding seawalls, monitored quarterly over a period of 12 months (August 2020 – August 2021) to assess taxon and functional richness, diversity, abundance and composition of fish, invertebrate and algal species. Physico-chemical characteristics of the water body were also monitored quarterly. Remote underwater video systems were used to quantify MaxN (maximum number of a fish species in the frame at any one time during each set that gives an indication of relative abundance) and identify fish species. The results of the two-way crossed ANOVAs indicated that gabion habitats recruited greater numbers and more types of fish species and from more functional groups than the seawalls, especially omnivorous and carnivorous fish. Additionally, photoquadrats were used to quantify percentage cover, counts and to identify colonising taxa. The results of the two-way crossed ANOVAs indicated that gabions hosted greater numbers of species resulting in a higher overall diversity and abundance of colonising organisms than seawalls. By contrast, the seawalls supported more types of functional groups of colonising organisms than gabions, largely due to abundances of different algal species. The results from the crossed PERMANOVAs indicated that the composition of fish and colonising organisms were vastly different from one another, and that each habitat was supporting very different functional groups. Results indicate that whilst both gabions and seawalls contain several alien species, that the ratio of native to alien species is higher in gabion habitats. Additionally, this research observed that gabion structures hosted four species listed on the IUCN Red List of Threatened Species. This study has highlighted that the use of gabions (with their natural increased complexity) could be important to consider for the future of urban coastal development in harbours such as in Knysna Harbour. Ecological engineering projects using gabions have the potential to be used in South Africa in projects that aim at increasing biodiversity in urban coastal environments. As well as increasing the settlement and abundance of habitat-forming ecosystem engineers to ensure the long-term stability of these ecosystems. They can be used both in the development of new costal development projects as well as in an ad-hoc fashion where they can be interspersed on seawalls in harbours. Additionally, gabions have the potential to be used in projects that target species of conservation concern such as the endangered Knysna Seahorse (Hippocampus capensis). It is, however, important to monitor the invasion by non-native species in future ecological engineering projects in South Africa as well as their potential for creating ecological traps (a situation in which an organism may be convinced to settle in a low-quality habitat) for certain species. , Thesis (MSc) -- Faculty of Science, Zoology and Entomology, 2024
- Full Text:
- Date Issued: 2024-04-04
Trophodynamics of carnivorous zooplankton in the region of the subtropical convergence within the Indian sector of the Southern Ocean, with particular emphasis on chaetognaths
- Authors: Sterley, Jessica Anne
- Date: 2009
- Subjects: Zooplankton -- Antarctic Ocean , Chaetognatha , Euphausiacea , Amphipoda , Predation (Biology)
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5790 , http://hdl.handle.net/10962/d1005478 , Zooplankton -- Antarctic Ocean , Chaetognatha , Euphausiacea , Amphipoda , Predation (Biology)
- Description: Trophodynamics of carnivorous zooplankton in the region of the Subtropical Convergence (STC) in the Indian sector of the Southern Ocean was investigated during austral autumn (April 2007) as part of the first cruise of the Southern Ocean Ecosystem Variability Study. Within the region of the study, the STC was well defined by the 14°C surface isotherm which separated the Agulhas Return Current and Subtropical water in the north from Sub-Antarctic waters to the south. Total average abundance (3.89 ± 5.46ind 100m-3) and biomass (0.14 ± 0.27mg Dwt 100m-3) of carnivorous zooplankton south of the front were significantly higher than the total average abundance (1.33 ± 1.81ind 100m-3) and biomass (0.03 ± 0.05mg Dwt 100m-3) north of the front (p<0.001). There were no significant correlations between the selected physico-chemical (temperature and salinity) and the biological (mesozooplankton abundance and biomass) variables and the total abundance and biomass of the carnivorous zooplankton during the investigation (p>0.05 in all cases). There was no evidence of enhanced biomass and abundance values at stations occupied in the immediate vicinity of the front. Total average carnivorous zooplankton abundance was dominated by chaetognaths (Eukrohnia hamata Möbius 1875, Sagitta gazellae Ritler-Záhony 1909 and S. zetesios Fowler 1905) and euphausiids (Nematoscelis megalops Sars 1883, Euphausia longirostris Hansen 1908 and E. spinifera Sars 1883), which contributed up to 86.58 ± 32.91% of the total counts. The total average biomass was dominated by euphausiids and amphipods (Themisto gaudichaudii Guérin-Méneville 1825, Phronima sedentaria Forsskål 1775 and Vibilia armata Bovallius 1887) which contributed up to 71.45 ± 34.85% of the total counts. In general the populations of both the euphausiids and amphipods were dominated by females while the chaetognaths were dominated by juveniles. Numerical analysis identified two major zooplankton groupings within the survey area which did not coincide with the water masses within the survey area. The SIMPER procedure of the PRIMER package indicated differences between the groups were mainly attributed to changes in the abundance of the numerically dominant species rather than the presence or absence of individual species. The absence of any significant spatial patterns in the distribution of the carnivorous zooplankton suggests that the STC did not act as a biogeographical barrier during the present study. The mean feeding rates of the chaetognaths E. hamata, S. gazellae and S. zetesios were 1.82 ± 0.85prey d-1, 3.63 ± 2.08prey d-1 and 2.18 ± 0.59prey d-1, respectively. These rates correspond to a combined predation impact equivalent to <5% of the mesozooplankton standing stock or <10% of the mesozooplankton secondary production. Mesozooplankton, comprising mainly copepods was the dominant prey in the guts of the three chaetognath species. Total predation impact of the euphausiids, chaetognaths and amphipods, estimated using published daily ration data, on the mesozooplankton standing stock and secondary production ranged from 0.01% to 1.53% and from 0.03% to 30.54%, respectively. Among the carnivorous zooplankton, chaetognaths were generally identified as the dominant predators of mesozooplankton. Low predation impact of selected carnivorous zooplankton suggested that these organisms contributed little to the vertical carbon flux within the region of investigation during the study.
- Full Text:
- Date Issued: 2009
- Authors: Sterley, Jessica Anne
- Date: 2009
- Subjects: Zooplankton -- Antarctic Ocean , Chaetognatha , Euphausiacea , Amphipoda , Predation (Biology)
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5790 , http://hdl.handle.net/10962/d1005478 , Zooplankton -- Antarctic Ocean , Chaetognatha , Euphausiacea , Amphipoda , Predation (Biology)
- Description: Trophodynamics of carnivorous zooplankton in the region of the Subtropical Convergence (STC) in the Indian sector of the Southern Ocean was investigated during austral autumn (April 2007) as part of the first cruise of the Southern Ocean Ecosystem Variability Study. Within the region of the study, the STC was well defined by the 14°C surface isotherm which separated the Agulhas Return Current and Subtropical water in the north from Sub-Antarctic waters to the south. Total average abundance (3.89 ± 5.46ind 100m-3) and biomass (0.14 ± 0.27mg Dwt 100m-3) of carnivorous zooplankton south of the front were significantly higher than the total average abundance (1.33 ± 1.81ind 100m-3) and biomass (0.03 ± 0.05mg Dwt 100m-3) north of the front (p<0.001). There were no significant correlations between the selected physico-chemical (temperature and salinity) and the biological (mesozooplankton abundance and biomass) variables and the total abundance and biomass of the carnivorous zooplankton during the investigation (p>0.05 in all cases). There was no evidence of enhanced biomass and abundance values at stations occupied in the immediate vicinity of the front. Total average carnivorous zooplankton abundance was dominated by chaetognaths (Eukrohnia hamata Möbius 1875, Sagitta gazellae Ritler-Záhony 1909 and S. zetesios Fowler 1905) and euphausiids (Nematoscelis megalops Sars 1883, Euphausia longirostris Hansen 1908 and E. spinifera Sars 1883), which contributed up to 86.58 ± 32.91% of the total counts. The total average biomass was dominated by euphausiids and amphipods (Themisto gaudichaudii Guérin-Méneville 1825, Phronima sedentaria Forsskål 1775 and Vibilia armata Bovallius 1887) which contributed up to 71.45 ± 34.85% of the total counts. In general the populations of both the euphausiids and amphipods were dominated by females while the chaetognaths were dominated by juveniles. Numerical analysis identified two major zooplankton groupings within the survey area which did not coincide with the water masses within the survey area. The SIMPER procedure of the PRIMER package indicated differences between the groups were mainly attributed to changes in the abundance of the numerically dominant species rather than the presence or absence of individual species. The absence of any significant spatial patterns in the distribution of the carnivorous zooplankton suggests that the STC did not act as a biogeographical barrier during the present study. The mean feeding rates of the chaetognaths E. hamata, S. gazellae and S. zetesios were 1.82 ± 0.85prey d-1, 3.63 ± 2.08prey d-1 and 2.18 ± 0.59prey d-1, respectively. These rates correspond to a combined predation impact equivalent to <5% of the mesozooplankton standing stock or <10% of the mesozooplankton secondary production. Mesozooplankton, comprising mainly copepods was the dominant prey in the guts of the three chaetognath species. Total predation impact of the euphausiids, chaetognaths and amphipods, estimated using published daily ration data, on the mesozooplankton standing stock and secondary production ranged from 0.01% to 1.53% and from 0.03% to 30.54%, respectively. Among the carnivorous zooplankton, chaetognaths were generally identified as the dominant predators of mesozooplankton. Low predation impact of selected carnivorous zooplankton suggested that these organisms contributed little to the vertical carbon flux within the region of investigation during the study.
- Full Text:
- Date Issued: 2009
Nutrient dynamics in and offshore of two permanently open South African estuaries with contrasting fresh water inflow
- Authors: Jennings, Michael Evan
- Date: 2006
- Subjects: Estuaries -- South Africa -- Great Fish River , Estuaries -- South Africa -- Kariega River , Marine ecology -- South Africa , Freshwater ecology -- South Africa , Rivers -- Environmental aspects , Water quality management -- South Africa , Water -- Analysis
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5735 , http://hdl.handle.net/10962/d1005421 , Estuaries -- South Africa -- Great Fish River , Estuaries -- South Africa -- Kariega River , Marine ecology -- South Africa , Freshwater ecology -- South Africa , Rivers -- Environmental aspects , Water quality management -- South Africa , Water -- Analysis
- Description: The nutrient dynamics in two contrasting estuaries and in the adjacent nearshore environment along the south-east coast of South Africa was investigated seasonally. Due to an inter-basin transfer of water from the Gariep Dam to the Great Fish River, the Great Fish estuary is a fresh water dominated, terrestrially driven system with an annual fresh water inflow of 250 – 650 x 10⁶ m³ per year. In contrast, the Kariega estuary is a fresh water deprived, marine dominated system with a fresh water inflow estimated at 2.5 – 35 x 10⁶ m³per year. The reduced fresh water inflow into the estuary is attributed to regular impoundments along the Kariega River. Water samples were collected from surface and subsurface layers along the length of the estuaries as well as from a series of transects occupied in the nearshore environment. Samples were analysed for nitrate, nitrite, ammonium, phosphate and silicate. Temperature and salinity were recorded at each station. A Land-Ocean Interactions in the Coastal Zone (LOICZ) budget was constructed for each estuary to describe the role of ecosystem-level metabolism as either a sink or a source of phosphorus, nitrogen and carbon. Seasonal variation in physico-chemical properties and nutrient concentrations in the Kariega estuary was minimal due to constant low inflow, while in the Great Fish estuary, concentrations varied in response to changes in flow rate. Nutrient concentrations were consistently higher in the Great Fish estuary than in the Kariega estuary, largely reflecting differences in fresh water inflow. During periods of high flow (32.92 m³.s⁻¹in the Great Fish River) dissolved inorganic nitrogen (DIN) concentrations in the Great Fish estuary were an order of magnitude higher than those recorded in the Kariega estuary. Results of the LOICZ budgeting procedures revealed that in spite of the contrasting hydrodynamic features, the estuaries behave in largely the same manner – both predominantly sources of nutrients with heterotrophic processes dominating over autotrophic actions and both were net denitrifyers during all surveys. This was, however, due to different sets of processes operating in the two estuaries, namely low nutrient concentrations resulting in microbial activity in the Kariega estuary, and riverine influx of nutrients and phytoplankton combined with a short residence time of the water in the Great Fish estuary. In the marine nearshore environment, higher nutrient concentrations were recorded adjacent to the Great Fish estuary than offshore of the Kariega estuary. This was due to a surface plume of less saline water leaving the Great Fish estuary, which acted as an ‘outweller’ of nutrients. Offshore of the Kariega estuary, on the other hand, the nutrient concentrations were characteristic of marine waters due to a lack of fresh water outflow from the estuary. Nutrient concentrations in the marine environment adjacent to the Kariega estuary were, at times, higher than those recorded within the estuary. This observation supports previous statements which suggest that the Kariega estuary is not an ‘outweller’ of dissolved nutrients and particulate material, but rather an extension of the marine environment.
- Full Text:
- Date Issued: 2006
- Authors: Jennings, Michael Evan
- Date: 2006
- Subjects: Estuaries -- South Africa -- Great Fish River , Estuaries -- South Africa -- Kariega River , Marine ecology -- South Africa , Freshwater ecology -- South Africa , Rivers -- Environmental aspects , Water quality management -- South Africa , Water -- Analysis
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5735 , http://hdl.handle.net/10962/d1005421 , Estuaries -- South Africa -- Great Fish River , Estuaries -- South Africa -- Kariega River , Marine ecology -- South Africa , Freshwater ecology -- South Africa , Rivers -- Environmental aspects , Water quality management -- South Africa , Water -- Analysis
- Description: The nutrient dynamics in two contrasting estuaries and in the adjacent nearshore environment along the south-east coast of South Africa was investigated seasonally. Due to an inter-basin transfer of water from the Gariep Dam to the Great Fish River, the Great Fish estuary is a fresh water dominated, terrestrially driven system with an annual fresh water inflow of 250 – 650 x 10⁶ m³ per year. In contrast, the Kariega estuary is a fresh water deprived, marine dominated system with a fresh water inflow estimated at 2.5 – 35 x 10⁶ m³per year. The reduced fresh water inflow into the estuary is attributed to regular impoundments along the Kariega River. Water samples were collected from surface and subsurface layers along the length of the estuaries as well as from a series of transects occupied in the nearshore environment. Samples were analysed for nitrate, nitrite, ammonium, phosphate and silicate. Temperature and salinity were recorded at each station. A Land-Ocean Interactions in the Coastal Zone (LOICZ) budget was constructed for each estuary to describe the role of ecosystem-level metabolism as either a sink or a source of phosphorus, nitrogen and carbon. Seasonal variation in physico-chemical properties and nutrient concentrations in the Kariega estuary was minimal due to constant low inflow, while in the Great Fish estuary, concentrations varied in response to changes in flow rate. Nutrient concentrations were consistently higher in the Great Fish estuary than in the Kariega estuary, largely reflecting differences in fresh water inflow. During periods of high flow (32.92 m³.s⁻¹in the Great Fish River) dissolved inorganic nitrogen (DIN) concentrations in the Great Fish estuary were an order of magnitude higher than those recorded in the Kariega estuary. Results of the LOICZ budgeting procedures revealed that in spite of the contrasting hydrodynamic features, the estuaries behave in largely the same manner – both predominantly sources of nutrients with heterotrophic processes dominating over autotrophic actions and both were net denitrifyers during all surveys. This was, however, due to different sets of processes operating in the two estuaries, namely low nutrient concentrations resulting in microbial activity in the Kariega estuary, and riverine influx of nutrients and phytoplankton combined with a short residence time of the water in the Great Fish estuary. In the marine nearshore environment, higher nutrient concentrations were recorded adjacent to the Great Fish estuary than offshore of the Kariega estuary. This was due to a surface plume of less saline water leaving the Great Fish estuary, which acted as an ‘outweller’ of nutrients. Offshore of the Kariega estuary, on the other hand, the nutrient concentrations were characteristic of marine waters due to a lack of fresh water outflow from the estuary. Nutrient concentrations in the marine environment adjacent to the Kariega estuary were, at times, higher than those recorded within the estuary. This observation supports previous statements which suggest that the Kariega estuary is not an ‘outweller’ of dissolved nutrients and particulate material, but rather an extension of the marine environment.
- Full Text:
- Date Issued: 2006
Euphausiid population structure and grazing in the Indian sector of the Antarctic Polar Frontal Zone, during austral autumn
- Bernard, Anthony Thomas Firth
- Authors: Bernard, Anthony Thomas Firth
- Date: 2005
- Subjects: Euphausiacea -- Antarctic Ocean , Euphausiacea -- Feeding and feeds
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5913 , http://hdl.handle.net/10962/d1015960
- Description: The trophodynamics of the numerically dominant euphausiid species within a region of high mesoscale oceanographic variability in the southwest Indian sector of the Antarctic Polar Frontal Zone (PFZ) were investigated during the austral autumns April/May) of 2004 and 2005. During the 2004 survey, sub-surface (200 m) temperature profiles indicated that an intense frontal feature, formed by the convergence of the Sub-Antarctic Front (SAF) and the Antarctic Polar Front (APF) bisected the survey area into two distinct zones, the Sub- Antarctic Zone (SAZ) and the Antarctic Zone (AAZ). Total integrated chlorophyll-a (chl-a) biomass was typical for the region (< 25 mg chl-a m⁻²), and was dominated by picophytoplankton. Total euphausiid abundance and biomass ranged from 0.1 to 3.1 ind m⁻³ and 0.1 to 8.1 mg dwt m⁻³, respectively, and did not differ significantly between the stations occupied in the SAZ and AAZ (p > 0.05). The multivariate analysis identified two interacting mechanisms controlling the distribution patterns, abundance and biomass of the various euphausiid species, namely (1) diel changes in abundance and biomass, (2) and restricted distribution patterns associated with the different water masses. Ingestion rates were determined for five euphausiid species. E. triacantha was found to have the highest daily ingestion rate ranging from 1 226.1 to 6 029.1 ng pigm ind⁻¹d⁻¹, while the lowest daily ingestion rates were observed in the juvenile Thysanoessa species (6.4 to 943.0 ng pigm ind⁻¹ d⁻¹). The total grazing impact of the selected euphausiids ranged from < 0.1 to 20.1 μg pigm m⁻²d⁻¹, corresponding to < 0.15 % of the areal chl-a biomass. The daily ration estimates of autotrophic carbon for the euphausiids suggested that phytoplankton represented a minor component in their diets, with only the sub-adult E. vallentini consuming sufficient phytoplankton to meet their daily carbon requirements. A cyclonic cold-core eddy spawned from the region of the APF located in the southwest Indian sector of the PFZ was the dominant feature during the 2005 survey. The total areal chl-a biomass throughout the region was low, ranging between 5.6 and 11.4 mg chl-a m⁻², and was significantly higher within the core of the eddy compared to the surrounding waters (p < 0.05). RMT-8 and WP-2 total euphausiid abundance and biomass estimates were high, and ranged from 0.004 to 0.36 ind m⁻³ and 0.065 to 1.21 mg dwt m⁻³, and from 0.01 to 18.2 ind m⁻³ and 0.01 to 15.7 mg dwt m⁻³, respectively. A distinct spatial pattern in the euphausiid community was evident with the Antarctic species, Euphausia frigida, E. triacantha and E. superba predominating within the core of the eddy, while the PFZ waters were characterized by the sub-Antarctic species, E. longirostris, Stylocheiron maximum, Nematoscelis megalops and Thysanoessa gregaria. The eddy edge acted as a transition zone where species from both regions co-occurred. Within the survey area the combined ingestion rate of the six numerically dominant euphausiid species ranged between 0.02 and 5.31 μg pigm m⁻²d¹, which corresponded to a loss of between < 0.001 and 0.11 % of the available chl-a biomass. E. triacantha and juvenile T. macura were identified as the dominant grazers. There was no apparent spatial pattern in the grazing activity of the euphausiids within the region of investigation. The average daily rations of the euphausiids examined were < 2 % of their body carbon. The low daily ration of the euphausiids could be ascribed to the predominance of small picophytoplankton in the region of investigation, which are too small to be grazed efficiently by larger zooplankton. The marked spatial patterns in species composition and the elevated abundance and biomass of euphausiids, suggest that the mesoscale eddies contribute to the spatial and temporal heterogeneity of the planktonic community of the PFZ and may represent important foraging regions for many of the apex predators within the region.
- Full Text:
- Date Issued: 2005
- Authors: Bernard, Anthony Thomas Firth
- Date: 2005
- Subjects: Euphausiacea -- Antarctic Ocean , Euphausiacea -- Feeding and feeds
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5913 , http://hdl.handle.net/10962/d1015960
- Description: The trophodynamics of the numerically dominant euphausiid species within a region of high mesoscale oceanographic variability in the southwest Indian sector of the Antarctic Polar Frontal Zone (PFZ) were investigated during the austral autumns April/May) of 2004 and 2005. During the 2004 survey, sub-surface (200 m) temperature profiles indicated that an intense frontal feature, formed by the convergence of the Sub-Antarctic Front (SAF) and the Antarctic Polar Front (APF) bisected the survey area into two distinct zones, the Sub- Antarctic Zone (SAZ) and the Antarctic Zone (AAZ). Total integrated chlorophyll-a (chl-a) biomass was typical for the region (< 25 mg chl-a m⁻²), and was dominated by picophytoplankton. Total euphausiid abundance and biomass ranged from 0.1 to 3.1 ind m⁻³ and 0.1 to 8.1 mg dwt m⁻³, respectively, and did not differ significantly between the stations occupied in the SAZ and AAZ (p > 0.05). The multivariate analysis identified two interacting mechanisms controlling the distribution patterns, abundance and biomass of the various euphausiid species, namely (1) diel changes in abundance and biomass, (2) and restricted distribution patterns associated with the different water masses. Ingestion rates were determined for five euphausiid species. E. triacantha was found to have the highest daily ingestion rate ranging from 1 226.1 to 6 029.1 ng pigm ind⁻¹d⁻¹, while the lowest daily ingestion rates were observed in the juvenile Thysanoessa species (6.4 to 943.0 ng pigm ind⁻¹ d⁻¹). The total grazing impact of the selected euphausiids ranged from < 0.1 to 20.1 μg pigm m⁻²d⁻¹, corresponding to < 0.15 % of the areal chl-a biomass. The daily ration estimates of autotrophic carbon for the euphausiids suggested that phytoplankton represented a minor component in their diets, with only the sub-adult E. vallentini consuming sufficient phytoplankton to meet their daily carbon requirements. A cyclonic cold-core eddy spawned from the region of the APF located in the southwest Indian sector of the PFZ was the dominant feature during the 2005 survey. The total areal chl-a biomass throughout the region was low, ranging between 5.6 and 11.4 mg chl-a m⁻², and was significantly higher within the core of the eddy compared to the surrounding waters (p < 0.05). RMT-8 and WP-2 total euphausiid abundance and biomass estimates were high, and ranged from 0.004 to 0.36 ind m⁻³ and 0.065 to 1.21 mg dwt m⁻³, and from 0.01 to 18.2 ind m⁻³ and 0.01 to 15.7 mg dwt m⁻³, respectively. A distinct spatial pattern in the euphausiid community was evident with the Antarctic species, Euphausia frigida, E. triacantha and E. superba predominating within the core of the eddy, while the PFZ waters were characterized by the sub-Antarctic species, E. longirostris, Stylocheiron maximum, Nematoscelis megalops and Thysanoessa gregaria. The eddy edge acted as a transition zone where species from both regions co-occurred. Within the survey area the combined ingestion rate of the six numerically dominant euphausiid species ranged between 0.02 and 5.31 μg pigm m⁻²d¹, which corresponded to a loss of between < 0.001 and 0.11 % of the available chl-a biomass. E. triacantha and juvenile T. macura were identified as the dominant grazers. There was no apparent spatial pattern in the grazing activity of the euphausiids within the region of investigation. The average daily rations of the euphausiids examined were < 2 % of their body carbon. The low daily ration of the euphausiids could be ascribed to the predominance of small picophytoplankton in the region of investigation, which are too small to be grazed efficiently by larger zooplankton. The marked spatial patterns in species composition and the elevated abundance and biomass of euphausiids, suggest that the mesoscale eddies contribute to the spatial and temporal heterogeneity of the planktonic community of the PFZ and may represent important foraging regions for many of the apex predators within the region.
- Full Text:
- Date Issued: 2005
Mesozooplankton community structure and grazing impact in the polar frontal zone of the Southern Ocean
- Authors: Bernard, Kim Sarah
- Date: 2003
- Subjects: Zooplankton -- Antarctic Ocean , Copepoda -- Feeding and feeds
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5731 , http://hdl.handle.net/10962/d1005417 , Zooplankton -- Antarctic Ocean , Copepoda -- Feeding and feeds
- Description: Mesozooplankton community structure and grazing impact in the Polar Frontal Zone (PFZ) of the Southern Ocean were investigated during two cruises of the South African National Antarctic Programme (SANAP), the Marion Offshore Ecosystem Variability Study I & II (MOEVS). During the first cruise (MOEVS I), a meso-scale oceanographic grid survey was conducted in the upstream region of the Prince Edward Islands (PEI) in austral autumn (April) 2001. Mesozooplankton samples, collected using a Bongo net (fitted with 200 and 300µm mesh nets) at depths between 200 and 300 m, were separated into three size fractions: 200-500 µm; 500-1000 µm; 1000-2000 µm by reverse filtration. Total surface (depth <5 m) chlorophyll-a (chl-a) concentration (measured fluorometrically) during the study ranged between 0.11 and 0.34 µg 1^(-1) and was always dominated by picophytoplankton (<2.0 µm). Total mesozooplankton abundance and biomass during the survey ranged between 49 and 1512 ind. m^(-3) and between 0.7 and 25 mg Dwt. m^(-3), respectively. Throughout the survey, the 200-500 µm class numerically dominated the mesozooplankton community, comprising an average of ~ 69% (SD = ± 12.3%). The dominant species in the 200-500 µm size fraction were the copepods Oithona similis, Calanus simillimus and Metridia lucens and the pteropod, Limacina retroversa. However, in terms of biomass, the 1000-2000 µm group was predominant, with dry weight values constituting an average of ~ 66% (SD = ± 10.2%). Biomass was dominated by carnivorous zooplankton, particularly the euphausiids, Euphausia vallentini and Thysanoessa vicina and the chaetognaths, Sagitta gazellae and Eukrohnia hamata. Three distinct groupings of stations were identified by multivariate analysis. The different station groupings identified reflect changes in the relative contributions of the rather than different species assemblages. During the second cruise (MOEVS II), conducted in April 2002 (austral autumn), mesozooplankton community structure and grazing impact were investigated at 13 stations in the west Indian sector of the PFZ. Total integrated chl-a biomass ranged between 11.17 and 28.34 mg chl-a m^(-2) and was always dominated by nano- and picophytoplankton (<20 µm). Throughout the study, small copepods, mainly Oithona similis and Ctenocalanus vanus, numerically dominated the mesozooplankton community comprising up to 85% (range 30 to 85%) of the total abundance. Grazing activity of the four most abundant copepods (O. similis, C. vanus, Calanus simillimus and Clausocalanus spp.), which comprised up to 93% of total mesozooplankton abundance, was investigated using the gut fluorescent technique. Results of gut fluorescence analyses indicated that C. simillimus, Clausocalanus spp. and Ctenocalanus vanus exhibited diel variability in gut pigments, with maximum values at various stages of the night. In contrast, O. similis did not demonstrate diel variation in gut pigment contents. Ingestion rates of the four copepods ranged from 23.23 to 1462.02 ng (pigm.) ind^(-1) day^(-1), depending on the species. The combined grazing impact of the four copepods, ranged between 1 and 36% of the phytoplankton standing stock per day, with the highest daily impact (~ 35.86%) occurring at stations in the vicinity of the Antarctic Polar Front. Among the copepods, O. similis and C. vanus were generally the most important consumers of phytoplankton biomass; together they were responsible for up to 89% (range 15 to 89%) of the total daily grazing impact. Carbon specific ingestion rates of the copepods varied between 42 and 320% body carbon per day, depending on the species. The study highlights the importance of small copepods in terms of both their significant contribution to total mesozooplankton numbers and their grazing impact on the phytoplankton standing stocks in the PFZ during austral autumn.
- Full Text:
- Date Issued: 2003
- Authors: Bernard, Kim Sarah
- Date: 2003
- Subjects: Zooplankton -- Antarctic Ocean , Copepoda -- Feeding and feeds
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5731 , http://hdl.handle.net/10962/d1005417 , Zooplankton -- Antarctic Ocean , Copepoda -- Feeding and feeds
- Description: Mesozooplankton community structure and grazing impact in the Polar Frontal Zone (PFZ) of the Southern Ocean were investigated during two cruises of the South African National Antarctic Programme (SANAP), the Marion Offshore Ecosystem Variability Study I & II (MOEVS). During the first cruise (MOEVS I), a meso-scale oceanographic grid survey was conducted in the upstream region of the Prince Edward Islands (PEI) in austral autumn (April) 2001. Mesozooplankton samples, collected using a Bongo net (fitted with 200 and 300µm mesh nets) at depths between 200 and 300 m, were separated into three size fractions: 200-500 µm; 500-1000 µm; 1000-2000 µm by reverse filtration. Total surface (depth <5 m) chlorophyll-a (chl-a) concentration (measured fluorometrically) during the study ranged between 0.11 and 0.34 µg 1^(-1) and was always dominated by picophytoplankton (<2.0 µm). Total mesozooplankton abundance and biomass during the survey ranged between 49 and 1512 ind. m^(-3) and between 0.7 and 25 mg Dwt. m^(-3), respectively. Throughout the survey, the 200-500 µm class numerically dominated the mesozooplankton community, comprising an average of ~ 69% (SD = ± 12.3%). The dominant species in the 200-500 µm size fraction were the copepods Oithona similis, Calanus simillimus and Metridia lucens and the pteropod, Limacina retroversa. However, in terms of biomass, the 1000-2000 µm group was predominant, with dry weight values constituting an average of ~ 66% (SD = ± 10.2%). Biomass was dominated by carnivorous zooplankton, particularly the euphausiids, Euphausia vallentini and Thysanoessa vicina and the chaetognaths, Sagitta gazellae and Eukrohnia hamata. Three distinct groupings of stations were identified by multivariate analysis. The different station groupings identified reflect changes in the relative contributions of the rather than different species assemblages. During the second cruise (MOEVS II), conducted in April 2002 (austral autumn), mesozooplankton community structure and grazing impact were investigated at 13 stations in the west Indian sector of the PFZ. Total integrated chl-a biomass ranged between 11.17 and 28.34 mg chl-a m^(-2) and was always dominated by nano- and picophytoplankton (<20 µm). Throughout the study, small copepods, mainly Oithona similis and Ctenocalanus vanus, numerically dominated the mesozooplankton community comprising up to 85% (range 30 to 85%) of the total abundance. Grazing activity of the four most abundant copepods (O. similis, C. vanus, Calanus simillimus and Clausocalanus spp.), which comprised up to 93% of total mesozooplankton abundance, was investigated using the gut fluorescent technique. Results of gut fluorescence analyses indicated that C. simillimus, Clausocalanus spp. and Ctenocalanus vanus exhibited diel variability in gut pigments, with maximum values at various stages of the night. In contrast, O. similis did not demonstrate diel variation in gut pigment contents. Ingestion rates of the four copepods ranged from 23.23 to 1462.02 ng (pigm.) ind^(-1) day^(-1), depending on the species. The combined grazing impact of the four copepods, ranged between 1 and 36% of the phytoplankton standing stock per day, with the highest daily impact (~ 35.86%) occurring at stations in the vicinity of the Antarctic Polar Front. Among the copepods, O. similis and C. vanus were generally the most important consumers of phytoplankton biomass; together they were responsible for up to 89% (range 15 to 89%) of the total daily grazing impact. Carbon specific ingestion rates of the copepods varied between 42 and 320% body carbon per day, depending on the species. The study highlights the importance of small copepods in terms of both their significant contribution to total mesozooplankton numbers and their grazing impact on the phytoplankton standing stocks in the PFZ during austral autumn.
- Full Text:
- Date Issued: 2003
- «
- ‹
- 1
- ›
- »