Evaluation of the effectiveness of small aperture network telescopes as IBR data sources
- Authors: Chindipha, Stones Dalitso
- Date: 2023-03-31
- Subjects: Computer networks Monitoring , Computer networks Security measures , Computer bootstrapping , Time-series analysis , Regression analysis , Mathematical models
- Language: English
- Type: Academic theses , Doctoral theses , text
- Identifier: http://hdl.handle.net/10962/366264 , vital:65849 , DOI https://doi.org/10.21504/10962/366264
- Description: The use of network telescopes to collect unsolicited network traffic by monitoring unallocated address space has been in existence for over two decades. Past research has shown that there is a lot of activity happening in this unallocated space that needs monitoring as it carries threat intelligence data that has proven to be very useful in the security field. Prior to the emergence of the Internet of Things (IoT), commercialisation of IP addresses and widespread of mobile devices, there was a large pool of IPv4 addresses and thus reserving IPv4 addresses to be used for monitoring unsolicited activities going in the unallocated space was not a problem. Now, preservation of such IPv4 addresses just for monitoring is increasingly difficult as there is not enough free addresses in the IPv4 address space to be used for just monitoring. This is the case because such monitoring is seen as a ’non-productive’ use of the IP addresses. This research addresses the problem brought forth by this IPv4 address space exhaustion in relation to Internet Background Radiation (IBR) monitoring. In order to address the research questions, this research developed four mathematical models: Absolute Mean Accuracy Percentage Score (AMAPS), Symmetric Absolute Mean Accuracy Percentage Score (SAMAPS), Standardised Mean Absolute Error (SMAE), and Standardised Mean Absolute Scaled Error (SMASE). These models are used to evaluate the research objectives and quantify the variations that exist between different samples. The sample sizes represent different lens sizes of the telescopes. The study has brought to light a time series plot that shows the expected proportion of unique source IP addresses collected over time. The study also imputed data using the smaller /24 IPv4 net-block subnets to regenerate the missing data points using bootstrapping to create confidence intervals (CI). The findings from the simulated data supports the findings computed from the models. The CI offers a boost to decision making. Through a series of experiments with monthly and quarterly datasets, the study proposed a 95% - 99% confidence level to be used. It was known that large network telescopes collect more threat intelligence data than small-sized network telescopes, however, no study, to the best of our knowledge, has ever quantified such a knowledge gap. With the findings from the study, small-sized network telescope users can now use their network telescopes with full knowledge of gap that exists in the data collected between different network telescopes. , Thesis (PhD) -- Faculty of Science, Computer Science, 2023
- Full Text:
- Date Issued: 2023-03-31
An analysis of fusing advanced malware email protection logs, malware intelligence and active directory attributes as an instrument for threat intelligence
- Authors: Vermeulen, Japie
- Date: 2018
- Subjects: Malware (Computer software) , Computer networks Security measures , Data mining , Phishing , Data logging , Quantitative research
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/63922 , vital:28506
- Description: After more than four decades email is still the most widely used electronic communication medium today. This electronic communication medium has evolved into an electronic weapon of choice for cyber criminals ranging from the novice to the elite. As cyber criminals evolve with tools, tactics and procedures, so too are technology vendors coming forward with a variety of advanced malware protection systems. However, even if an organization adopts such a system, there is still the daily challenge of interpreting the log data and understanding the type of malicious email attack, including who the target was and what the payload was. This research examines a six month data set obtained from an advanced malware email protection system from a bank in South Africa. Extensive data fusion techniques are used to provide deeper insight into the data by blending these with malware intelligence and business context. The primary data set is fused with malware intelligence to identify the different malware families associated with the samples. Active Directory attributes such as the business cluster, department and job title of users targeted by malware are also fused into the combined data. This study provides insight into malware attacks experienced in the South African financial services sector. For example, most of the malware samples identified belonged to different types of ransomware families distributed by known botnets. However, indicators of targeted attacks were observed based on particular employees targeted with exploit code and specific strains of malware. Furthermore, a short time span between newly discovered vulnerabilities and the use of malicious code to exploit such vulnerabilities through email were observed in this study. The fused data set provided the context to answer the “who”, “what”, “where” and “when”. The proposed methodology can be applied to any organization to provide insight into the malware threats identified by advanced malware email protection systems. In addition, the fused data set provides threat intelligence that could be used to strengthen the cyber defences of an organization against cyber threats.
- Full Text:
- Date Issued: 2018