A decision-making model to guide securing blockchain deployments
- Authors: Cronje, Gerhard Roets
- Date: 2021-10-29
- Subjects: Blockchains (Databases) , Bitcoin , Cryptocurrencies , Distributed databases , Computer networks Security measures , Computer networks Security measures Decision making , Ethereum
- Language: English
- Type: Masters theses , text
- Identifier: http://hdl.handle.net/10962/188865 , vital:44793
- Description: Satoshi Nakamoto, the pseudo-identity accredit with the paper that sparked the implementation of Bitcoin, is famously quoted as remarking, electronically of course, that “If you don’t believe it or don’t get it, I don’t have time to try and convince you, sorry” (Tsapis, 2019, p. 1). What is noticeable, 12 years after the famed Satoshi paper that initiated Bitcoin (Nakamoto, 2008), is that blockchain at the very least has staying power and potentially wide application. A lesser known figure Marc Kenisberg, founder of Bitcoin Chaser which is one of the many companies formed around the Bitcoin ecosystem, summarised it well saying “…Blockchain is the tech - Bitcoin is merely the first mainstream manifestation of its potential” (Tsapis, 2019, p. 1). With blockchain still trying to reach its potential and still maturing on its way towards a mainstream technology the main question that arises for security professionals is how do I ensure we do it securely? This research seeks to address that question by proposing a decision-making model that can be used by a security professional to guide them through ensuring appropriate security for blockchain deployments. This research is certainly not the first attempt at discussing the security of the blockchain and will not be the last, as the technology around blockchain and distributed ledger technology is still rapidly evolving. What this research does try to achieve is not to delve into extremely specific areas of blockchain security, or get bogged down in technical details, but to provide a reference framework that aims to cover all the major areas to be considered. The approach followed was to review the literature regarding blockchain and to identify the main security areas to be addressed. It then proposes a decision-making model and tests the model against a fictitious but relevant real-world example. It concludes with learnings from this research. The reader can be the judge, but the model aims to be a practical valuable resource to be used by any security professional, to navigate the security aspects logically and understandably when being involved in a blockchain deployment. In contrast to the Satoshi quote, this research tries to convince the reader and assist him/her in understanding the security choices related to every blockchain deployment. , Thesis (MSc) -- Faculty of Science, Computer Science, 2021
- Full Text:
- Authors: Cronje, Gerhard Roets
- Date: 2021-10-29
- Subjects: Blockchains (Databases) , Bitcoin , Cryptocurrencies , Distributed databases , Computer networks Security measures , Computer networks Security measures Decision making , Ethereum
- Language: English
- Type: Masters theses , text
- Identifier: http://hdl.handle.net/10962/188865 , vital:44793
- Description: Satoshi Nakamoto, the pseudo-identity accredit with the paper that sparked the implementation of Bitcoin, is famously quoted as remarking, electronically of course, that “If you don’t believe it or don’t get it, I don’t have time to try and convince you, sorry” (Tsapis, 2019, p. 1). What is noticeable, 12 years after the famed Satoshi paper that initiated Bitcoin (Nakamoto, 2008), is that blockchain at the very least has staying power and potentially wide application. A lesser known figure Marc Kenisberg, founder of Bitcoin Chaser which is one of the many companies formed around the Bitcoin ecosystem, summarised it well saying “…Blockchain is the tech - Bitcoin is merely the first mainstream manifestation of its potential” (Tsapis, 2019, p. 1). With blockchain still trying to reach its potential and still maturing on its way towards a mainstream technology the main question that arises for security professionals is how do I ensure we do it securely? This research seeks to address that question by proposing a decision-making model that can be used by a security professional to guide them through ensuring appropriate security for blockchain deployments. This research is certainly not the first attempt at discussing the security of the blockchain and will not be the last, as the technology around blockchain and distributed ledger technology is still rapidly evolving. What this research does try to achieve is not to delve into extremely specific areas of blockchain security, or get bogged down in technical details, but to provide a reference framework that aims to cover all the major areas to be considered. The approach followed was to review the literature regarding blockchain and to identify the main security areas to be addressed. It then proposes a decision-making model and tests the model against a fictitious but relevant real-world example. It concludes with learnings from this research. The reader can be the judge, but the model aims to be a practical valuable resource to be used by any security professional, to navigate the security aspects logically and understandably when being involved in a blockchain deployment. In contrast to the Satoshi quote, this research tries to convince the reader and assist him/her in understanding the security choices related to every blockchain deployment. , Thesis (MSc) -- Faculty of Science, Computer Science, 2021
- Full Text:
Targeted attack detection by means of free and open source solutions
- Authors: Bernardo, Louis F
- Date: 2019
- Subjects: Computer networks -- Security measures , Information technology -- Security measures , Computer security -- Management , Data protection
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/92269 , vital:30703
- Description: Compliance requirements are part of everyday business requirements for various areas, such as retail and medical services. As part of compliance it may be required to have infrastructure in place to monitor the activities in the environment to ensure that the relevant data and environment is sufficiently protected. At the core of such monitoring solutions one would find some type of data repository, or database, to store and ultimately correlate the captured events. Such solutions are commonly called Security Information and Event Management, or SIEM for short. Larger companies have been known to use commercial solutions such as IBM's Qradar, Logrythm, or Splunk. However, these come at significant cost and arent suitable for smaller businesses with limited budgets. These solutions require manual configuration of event correlation for detection of activities that place the environment in danger. This usually requires vendor implementation assistance that also would come at a cost. Alternatively, there are open source solutions that provide the required functionality. This research will demonstrate building an open source solution, with minimal to no cost for hardware or software, while still maintaining the capability of detecting targeted attacks. The solution presented in this research includes Wazuh, which is a combination of OSSEC and the ELK stack, integrated with an Network Intrusion Detection System (NIDS). The success of the integration, is determined by measuring postive attack detection based on each different configuration options. To perform the testing, a deliberately vulnerable platform named Metasploitable will be used as a victim host. The victim host vulnerabilities were created specifically to serve as target for Metasploit. The attacks were generated by utilising Metasploit Framework on a prebuilt Kali Linux host.
- Full Text:
- Authors: Bernardo, Louis F
- Date: 2019
- Subjects: Computer networks -- Security measures , Information technology -- Security measures , Computer security -- Management , Data protection
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/92269 , vital:30703
- Description: Compliance requirements are part of everyday business requirements for various areas, such as retail and medical services. As part of compliance it may be required to have infrastructure in place to monitor the activities in the environment to ensure that the relevant data and environment is sufficiently protected. At the core of such monitoring solutions one would find some type of data repository, or database, to store and ultimately correlate the captured events. Such solutions are commonly called Security Information and Event Management, or SIEM for short. Larger companies have been known to use commercial solutions such as IBM's Qradar, Logrythm, or Splunk. However, these come at significant cost and arent suitable for smaller businesses with limited budgets. These solutions require manual configuration of event correlation for detection of activities that place the environment in danger. This usually requires vendor implementation assistance that also would come at a cost. Alternatively, there are open source solutions that provide the required functionality. This research will demonstrate building an open source solution, with minimal to no cost for hardware or software, while still maintaining the capability of detecting targeted attacks. The solution presented in this research includes Wazuh, which is a combination of OSSEC and the ELK stack, integrated with an Network Intrusion Detection System (NIDS). The success of the integration, is determined by measuring postive attack detection based on each different configuration options. To perform the testing, a deliberately vulnerable platform named Metasploitable will be used as a victim host. The victim host vulnerabilities were created specifically to serve as target for Metasploit. The attacks were generated by utilising Metasploit Framework on a prebuilt Kali Linux host.
- Full Text:
- «
- ‹
- 1
- ›
- »