SolarKAT: a solar imaging pipeline for MeerKAT
- Samboco, Victória da Graça Gilberto
- Authors: Samboco, Victória da Graça Gilberto
- Date: 2024-10-11
- Subjects: MeerKAT , Radio interferometers , Solar activity , Radio Interference , Data processing
- Language: English
- Type: Academic theses , Master's theses , text
- Identifier: http://hdl.handle.net/10962/465102 , vital:76573
- Description: Solar interference poses a significant challenge in radio interferometric observations, particularly with the increasing sensitivity of modern new-generation telescopes. This thesis presents the SolarKAT pipeline, a novel approach designed to mitigate solar interference in MeerKAT observations. The pipeline incorporates a series of steps, including self-calibration (second generation calibration or 2GC), precise determination of the Sun’s position, phase centre adjustments, creation of region-based masks, deconvolution, prediction, solar model subtraction, and peeling. We applied the SolarKAT pipeline to three datasets that feature the Sun in different conditions (frequency band and angular distance from the Sun to the telescope pointing position). These observations were obtained from three MeerKAT telescope surveys: ThunderKAT, MIGHTEE and LADUMA. We compared the visual images, peak fluxes, flux density, RMS and pixel distribution to evaluate the pipeline. Our results showed a notable reduction in solar interference. This is evidenced by the improved image quality, reduction in RMS and pixel distribution values, and consistent peak flux measurements after applying the pipeline. SolarKAT has not only improved the data quality but also demonstrated to be a valuable tool in producing high-quality solar images, which can be a helpful resource for solar physics and space weather forecasts. This study showcases the potential of the SolarKAT pipeline in enabling high-quality radio interferometric observations, even in the presence of solar interference. Unlike conventional methods that often discard corrupted visibilities (e.g. flagging), our approach focuses on recovering them. Additionally, the SolarKAT pipeline naturally delivers detailed images of the Sun. Our findings contribute to advancing the field of radio interferometry, providing a valuable tool for researchers seeking to enhance the accuracy of their observations and conduct studies in solar physics and space weather. , Thesis (MSc) -- Faculty of Science, Physics and Electronics, 2024
- Full Text:
- Authors: Samboco, Victória da Graça Gilberto
- Date: 2024-10-11
- Subjects: MeerKAT , Radio interferometers , Solar activity , Radio Interference , Data processing
- Language: English
- Type: Academic theses , Master's theses , text
- Identifier: http://hdl.handle.net/10962/465102 , vital:76573
- Description: Solar interference poses a significant challenge in radio interferometric observations, particularly with the increasing sensitivity of modern new-generation telescopes. This thesis presents the SolarKAT pipeline, a novel approach designed to mitigate solar interference in MeerKAT observations. The pipeline incorporates a series of steps, including self-calibration (second generation calibration or 2GC), precise determination of the Sun’s position, phase centre adjustments, creation of region-based masks, deconvolution, prediction, solar model subtraction, and peeling. We applied the SolarKAT pipeline to three datasets that feature the Sun in different conditions (frequency band and angular distance from the Sun to the telescope pointing position). These observations were obtained from three MeerKAT telescope surveys: ThunderKAT, MIGHTEE and LADUMA. We compared the visual images, peak fluxes, flux density, RMS and pixel distribution to evaluate the pipeline. Our results showed a notable reduction in solar interference. This is evidenced by the improved image quality, reduction in RMS and pixel distribution values, and consistent peak flux measurements after applying the pipeline. SolarKAT has not only improved the data quality but also demonstrated to be a valuable tool in producing high-quality solar images, which can be a helpful resource for solar physics and space weather forecasts. This study showcases the potential of the SolarKAT pipeline in enabling high-quality radio interferometric observations, even in the presence of solar interference. Unlike conventional methods that often discard corrupted visibilities (e.g. flagging), our approach focuses on recovering them. Additionally, the SolarKAT pipeline naturally delivers detailed images of the Sun. Our findings contribute to advancing the field of radio interferometry, providing a valuable tool for researchers seeking to enhance the accuracy of their observations and conduct studies in solar physics and space weather. , Thesis (MSc) -- Faculty of Science, Physics and Electronics, 2024
- Full Text:
Advanced radio interferometric simulation and data reduction techniques
- Authors: Makhathini, Sphesihle
- Date: 2018
- Subjects: Interferometry , Radio interferometers , Algorithms , Radio telescopes , Square Kilometre Array (Project) , Very Large Array (Observatory : N.M.) , Radio astronomy
- Language: English
- Type: text , Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/57348 , vital:26875
- Description: This work shows how legacy and novel radio Interferometry software packages and algorithms can be combined to produce high-quality reductions from modern telescopes, as well as end-to-end simulations for upcoming instruments such as the Square Kilometre Array (SKA) and its pathfinders. We first use a MeqTrees based simulations framework to quantify how artefacts due to direction-dependent effects accumulate with time, and the consequences of this accumulation when observing the same field multiple times in order to reach the survey depth. Our simulations suggest that a survey like LADUMA (Looking at the Distant Universe with MeerKAT Array), which aims to achieve its survey depth of 16 µJy/beam in a 72 kHz at 1.42 GHz by observing the same field for 1000 hours, will be able to reach its target depth in the presence of these artefacts. We also present stimela, a system agnostic scripting framework for simulating, processing and imaging radio interferometric data. This framework is then used to write an end-to-end simulation pipeline in order to quantify the resolution and sensitivity of the SKA1-MID telescope (the first phase of the SKA mid-frequency telescope) as a function of frequency, as well as the scale-dependent sensitivity of the telescope. Finally, a stimela-based reduction pipeline is used to process data of the field around the source 3C147, taken by the Karl G. Jansky Very Large Array (VLA). The reconstructed image from this reduction has a typical 1a noise level of 2.87 µJy/beam, and consequently a dynamic range of 8x106:1, given the 22.58 Jy/beam flux Density of the source 3C147.
- Full Text:
- Authors: Makhathini, Sphesihle
- Date: 2018
- Subjects: Interferometry , Radio interferometers , Algorithms , Radio telescopes , Square Kilometre Array (Project) , Very Large Array (Observatory : N.M.) , Radio astronomy
- Language: English
- Type: text , Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/57348 , vital:26875
- Description: This work shows how legacy and novel radio Interferometry software packages and algorithms can be combined to produce high-quality reductions from modern telescopes, as well as end-to-end simulations for upcoming instruments such as the Square Kilometre Array (SKA) and its pathfinders. We first use a MeqTrees based simulations framework to quantify how artefacts due to direction-dependent effects accumulate with time, and the consequences of this accumulation when observing the same field multiple times in order to reach the survey depth. Our simulations suggest that a survey like LADUMA (Looking at the Distant Universe with MeerKAT Array), which aims to achieve its survey depth of 16 µJy/beam in a 72 kHz at 1.42 GHz by observing the same field for 1000 hours, will be able to reach its target depth in the presence of these artefacts. We also present stimela, a system agnostic scripting framework for simulating, processing and imaging radio interferometric data. This framework is then used to write an end-to-end simulation pipeline in order to quantify the resolution and sensitivity of the SKA1-MID telescope (the first phase of the SKA mid-frequency telescope) as a function of frequency, as well as the scale-dependent sensitivity of the telescope. Finally, a stimela-based reduction pipeline is used to process data of the field around the source 3C147, taken by the Karl G. Jansky Very Large Array (VLA). The reconstructed image from this reduction has a typical 1a noise level of 2.87 µJy/beam, and consequently a dynamic range of 8x106:1, given the 22.58 Jy/beam flux Density of the source 3C147.
- Full Text:
- «
- ‹
- 1
- ›
- »