Quantifying ecosystem restoration recovery and restoration practice following the biological control of invasive alien macrophytes in Southern Africa
- Authors: Motitsoe, Samuel Nkopane
- Date: 2020
- Subjects: Salvinia molesta , Ceratophyllum demersum , Nymphaea mexicana , Invasive plants -- Biological control -- South Africa , Aquatic weeds -- Biological control -- South Africa , Restoration monitoring (Ecology) -- South Africa , Biolotical invasions -- Environmental aspects
- Language: English
- Type: text , Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/167519 , vital:41488
- Description: Invasive alien aquatic plants (IAAP) species are known to have deleterious effects on the freshwater ecosystems they invade. This includes both socio-economic and ecologically important ecosystem goods and services. Thus, IAAP species are declared a serious threat, second only to habitat modification for causing a loss of aquatic biodiversity. Three control methods have been widely applied to control IAAP species invasion globally; mechanical, chemical and biological control. Both mechanical and chemical control methods are considered short-term and expensive, whereas biological control methods are regarded an effective and long-term solution for IAAP species control at the landscape level. But, little is known of the ecological recovery following the biological control of IAAP species, with mechanical control known to have had mixed success and chemical control to have non-targeted effects on aquatic ecosystems, causing harm to wildlife and human well-being. Biological control practitioners measure the success of biological control based on: (1) the biological control agents’ establishment and the negative impacts they impose on the targeted weed; and (2) the weeds biomass reduction and an increase in native macrophytes species. Arguably, measures of biological control success have been subjective and variable across the globe. Although some field studies have demonstrated biological control success to have positive socio-economic returns, there is little literature on ecological benefits. Furthermore, there is limited understanding on ecosystem recovery and possible restoration efforts following the biological control IAAP species, as compared to alien weeds in terrestrial and riparian ecosystems. Thus, this thesis aimed to quantify the ecological recovery i.e. aquatic biodiversity, ecosystem processes and trophic interactions following the management of Salvinia molesta in freshwater ecosystems. The research employed a suite of Before-After Control-Impact mesocosm and field studies to investigate the response of aquatic microalgae, macroinvertebrates and their interactions (food web structure and function) during S. molesta infestation and after mechanical and biological control. The mesocosm experiment (Before invasion, During invasion & After control) showed that both aquatic microalgae and macroinvertebrate diversity indices were reliable biological indicators of S. molesta ecological impacts and recovery following control. The restored treatment (100% S. molesta cover + biological control agents), demonstrated complete aquatic microalgae and macroinvertebrate recovery following biological control, similar to the control treatment (open water), where the degraded/impacted treatment (100% S. molesta cover with no biological control agents) showed a drastic decline in aquatic biodiversity and a complete shift in aquatic biota assemblage structure. Thus, the biological control effort by Cyrtobagous salviniae, the biological control agent for S. molesta, assisted in the recovery of aquatic biota following successful biological control. The field study (four field sites, two sites controlled mechanically and two biologically) investigated water quality, aquatic biodiversity and community trophic interactions (aquatic food web) “before and after” S. molesta control. The study showed a drastic decline in aquatic biodiversity (with three sites showing no record of aquatic macroinvertebrates, thus no biotic interactions during infestation) and poor water quality due to the shade-effect (light barrier due to floating S. molesta mats on the water surface) during the “before” S. molesta control phase. However, following both mechanical and biological control (“after” S. molesta control phase), there was a significant shift in abiotic and biotic ecosystem characteristics as compared to the “before” S. molesta control phase. Thus, rapid ecosystem recovery was apparent as a result of aquatic microalgae and macroinvertebrates recolonisation. Sites showed a normal functioning ecosystem where improved water quality, increased biodiversity, productivity and trophic interactions, was indicative of the return of biologically and functionally important species which were lost during the “before” S. molesta phase. Although the clear water state showed positive outcomes at Westlake River, these were short lived when the system was dominated by a cosmopolitan submerged Ceratophyllum demersum, and later replaced by a floating-leaved emergent IAAP Nymphaea mexicana. Each state was responsible for a significant shift in both biotic and abiotic characteristics, affirming macrophyte abilities to influence aquatic environments structure and functions. Furthermore, this event showed a clear example of a secondary invasion. Thus, a holistic IAAP species management strategy is necessary to restore previously invaded ecosystems and prevent subsequent secondary invasion and ecosystem degradation. In conclusion, the S. molesta shade-effect like any other free-floating IAAP species, was identified as the main degrading factor and responsible for water quality reduction, loss of aquatic diversity and shift in aquatic biota assemblage structure. Following S. molesta removal (or shade-effect elimination), there was a positive response to aquatic ecosystem species abundance, richness, diversity and community structure. Therefore, in combination, aquatic biota recolonisation rate and increases in biological and functional diversity were instrumental in the recovery of ecosystem structure and functions, following the control of S. molesta. Echoing existing literature, this thesis recommends: (1) IAAP species management programmes (mechanical and/or biological control) should not only aim to control the weed but also focus on ecosystems recovery and possible restoration goals; (2) biological control should be used where appropriate to combat free-floating IAAP species in freshwater ecosystems, followed by active introduction of native macrophyte propagules since they are limited by anthropogenic activities; and (3) more freshwater case studies are needed to add to our understanding of IAAP species management and restoration effort incorporating long-term monitoring.
- Full Text:
- Date Issued: 2020
- Authors: Motitsoe, Samuel Nkopane
- Date: 2020
- Subjects: Salvinia molesta , Ceratophyllum demersum , Nymphaea mexicana , Invasive plants -- Biological control -- South Africa , Aquatic weeds -- Biological control -- South Africa , Restoration monitoring (Ecology) -- South Africa , Biolotical invasions -- Environmental aspects
- Language: English
- Type: text , Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/167519 , vital:41488
- Description: Invasive alien aquatic plants (IAAP) species are known to have deleterious effects on the freshwater ecosystems they invade. This includes both socio-economic and ecologically important ecosystem goods and services. Thus, IAAP species are declared a serious threat, second only to habitat modification for causing a loss of aquatic biodiversity. Three control methods have been widely applied to control IAAP species invasion globally; mechanical, chemical and biological control. Both mechanical and chemical control methods are considered short-term and expensive, whereas biological control methods are regarded an effective and long-term solution for IAAP species control at the landscape level. But, little is known of the ecological recovery following the biological control of IAAP species, with mechanical control known to have had mixed success and chemical control to have non-targeted effects on aquatic ecosystems, causing harm to wildlife and human well-being. Biological control practitioners measure the success of biological control based on: (1) the biological control agents’ establishment and the negative impacts they impose on the targeted weed; and (2) the weeds biomass reduction and an increase in native macrophytes species. Arguably, measures of biological control success have been subjective and variable across the globe. Although some field studies have demonstrated biological control success to have positive socio-economic returns, there is little literature on ecological benefits. Furthermore, there is limited understanding on ecosystem recovery and possible restoration efforts following the biological control IAAP species, as compared to alien weeds in terrestrial and riparian ecosystems. Thus, this thesis aimed to quantify the ecological recovery i.e. aquatic biodiversity, ecosystem processes and trophic interactions following the management of Salvinia molesta in freshwater ecosystems. The research employed a suite of Before-After Control-Impact mesocosm and field studies to investigate the response of aquatic microalgae, macroinvertebrates and their interactions (food web structure and function) during S. molesta infestation and after mechanical and biological control. The mesocosm experiment (Before invasion, During invasion & After control) showed that both aquatic microalgae and macroinvertebrate diversity indices were reliable biological indicators of S. molesta ecological impacts and recovery following control. The restored treatment (100% S. molesta cover + biological control agents), demonstrated complete aquatic microalgae and macroinvertebrate recovery following biological control, similar to the control treatment (open water), where the degraded/impacted treatment (100% S. molesta cover with no biological control agents) showed a drastic decline in aquatic biodiversity and a complete shift in aquatic biota assemblage structure. Thus, the biological control effort by Cyrtobagous salviniae, the biological control agent for S. molesta, assisted in the recovery of aquatic biota following successful biological control. The field study (four field sites, two sites controlled mechanically and two biologically) investigated water quality, aquatic biodiversity and community trophic interactions (aquatic food web) “before and after” S. molesta control. The study showed a drastic decline in aquatic biodiversity (with three sites showing no record of aquatic macroinvertebrates, thus no biotic interactions during infestation) and poor water quality due to the shade-effect (light barrier due to floating S. molesta mats on the water surface) during the “before” S. molesta control phase. However, following both mechanical and biological control (“after” S. molesta control phase), there was a significant shift in abiotic and biotic ecosystem characteristics as compared to the “before” S. molesta control phase. Thus, rapid ecosystem recovery was apparent as a result of aquatic microalgae and macroinvertebrates recolonisation. Sites showed a normal functioning ecosystem where improved water quality, increased biodiversity, productivity and trophic interactions, was indicative of the return of biologically and functionally important species which were lost during the “before” S. molesta phase. Although the clear water state showed positive outcomes at Westlake River, these were short lived when the system was dominated by a cosmopolitan submerged Ceratophyllum demersum, and later replaced by a floating-leaved emergent IAAP Nymphaea mexicana. Each state was responsible for a significant shift in both biotic and abiotic characteristics, affirming macrophyte abilities to influence aquatic environments structure and functions. Furthermore, this event showed a clear example of a secondary invasion. Thus, a holistic IAAP species management strategy is necessary to restore previously invaded ecosystems and prevent subsequent secondary invasion and ecosystem degradation. In conclusion, the S. molesta shade-effect like any other free-floating IAAP species, was identified as the main degrading factor and responsible for water quality reduction, loss of aquatic diversity and shift in aquatic biota assemblage structure. Following S. molesta removal (or shade-effect elimination), there was a positive response to aquatic ecosystem species abundance, richness, diversity and community structure. Therefore, in combination, aquatic biota recolonisation rate and increases in biological and functional diversity were instrumental in the recovery of ecosystem structure and functions, following the control of S. molesta. Echoing existing literature, this thesis recommends: (1) IAAP species management programmes (mechanical and/or biological control) should not only aim to control the weed but also focus on ecosystems recovery and possible restoration goals; (2) biological control should be used where appropriate to combat free-floating IAAP species in freshwater ecosystems, followed by active introduction of native macrophyte propagules since they are limited by anthropogenic activities; and (3) more freshwater case studies are needed to add to our understanding of IAAP species management and restoration effort incorporating long-term monitoring.
- Full Text:
- Date Issued: 2020
Interactions between three biological control agents of water hyacinth, Eichhornia crassipes (Mart.) Solms (Pontederiaceae) in South Africa
- Authors: Petela, Nomvume
- Date: 2018
- Subjects: Water hyacinth -- South Africa , Water hyacinth -- Biological control -- South Africa , Aquatic weeds -- Biological control -- South Africa , Curculionidae , Delphacidae , Miridae , Neochetina eichhorniae Warner , Megamelus scutellaris Berg , Eccritotarsus eichhorniae Henry
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/60676 , vital:27814
- Description: Water hyacinth, Eichhomia crassipes (Mart.) Solms (Pontederiaceae) is a free-floating perennial weed that is regarded as the worst aquatic weed in the world because of its negative impacts on aquatic ecosystems. It is native to the Amazon Basin of South America, but since the late 1800s has spread throughout the world. The first record of the weed in South Africa was noted in 1908 on the Cape Flats and in KwaZulu-Natal, but it is now dispersed throughout the country. Mechanical and chemical control methods have been used against the weed, but biological control is considered the most cost-effective, sustainable and environmentally friendly intervention. Currently, nine biological control agents have been released against water hyacinth in South Africa, and Neochetina eichhorniae Warner (Coleoptera: Curculionidae) is used most widely to control it. However, in some sites, water hyacinth mats have still not been brought under control because of eutrophic waters and cool temperatures. It was therefore necessary to release new biological control agents to complement the impact of N. eichhorniae. Megamelus scutellaris Berg (Hemiptera: Delphacidae) was released in 2013, but little is known about how it interacts with other agents already present in South Africa. It is likely to compete with the established biological control agent, Eccritotarsus eichhorniae Henry (Heteroptera: Miridae), because they are both sap suckers. On the other hand, N. eichhorniae is the most widespread and thus the most important biological control agent for water hyacinth. The aim of this study, then, was to determine the interactions between the two sap-sucking agents in South Africa that presumably occupy similar niches on the plant, and the interaction between M. scutellerais and N. eichhorniae, the most widely distributed and abundant agent in South Africa. Three experiments were conducted at the Waainek Research Facility at Rhodes University, Grahamstown, Eastern Cape, South Africa. Plants were grown for two weeks and insect species were inoculated singly or in combination. Water hyacinth, plant growth parameters and insect parameters were measured every 14 days for a period of 12 weeks. The results of the study showed that feeding by either E. eichhorniae or M. scutellaris had no effect on the feeding of the other agent. Both agents reduced all the measured plant growth parameters equally, either singly or in combination (i.e. E. eichhorniae or M. scutellaris alone or together). The interaction between the two agents appears neutral and agents are likely to complement each other in the field. Prior feeding by E. eichhorniae or M. scutellaris on water hyacinth did not affect the subsequent feeding by either agent. Megamelus scutellaris prefers healthy fresh water hyacinth plants. In addition, planthoppers performed best in combination with the weevil, especially on plants with new weevil feeding scars. The results of the study showed that M. scutellaris is compatible with other biological control agents of water hyacinth that are already established in South Africa. Therefore, the introduction of M. scutellaris may enhance the biological control of water hyacinth in South Africa.
- Full Text:
- Date Issued: 2018
- Authors: Petela, Nomvume
- Date: 2018
- Subjects: Water hyacinth -- South Africa , Water hyacinth -- Biological control -- South Africa , Aquatic weeds -- Biological control -- South Africa , Curculionidae , Delphacidae , Miridae , Neochetina eichhorniae Warner , Megamelus scutellaris Berg , Eccritotarsus eichhorniae Henry
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/60676 , vital:27814
- Description: Water hyacinth, Eichhomia crassipes (Mart.) Solms (Pontederiaceae) is a free-floating perennial weed that is regarded as the worst aquatic weed in the world because of its negative impacts on aquatic ecosystems. It is native to the Amazon Basin of South America, but since the late 1800s has spread throughout the world. The first record of the weed in South Africa was noted in 1908 on the Cape Flats and in KwaZulu-Natal, but it is now dispersed throughout the country. Mechanical and chemical control methods have been used against the weed, but biological control is considered the most cost-effective, sustainable and environmentally friendly intervention. Currently, nine biological control agents have been released against water hyacinth in South Africa, and Neochetina eichhorniae Warner (Coleoptera: Curculionidae) is used most widely to control it. However, in some sites, water hyacinth mats have still not been brought under control because of eutrophic waters and cool temperatures. It was therefore necessary to release new biological control agents to complement the impact of N. eichhorniae. Megamelus scutellaris Berg (Hemiptera: Delphacidae) was released in 2013, but little is known about how it interacts with other agents already present in South Africa. It is likely to compete with the established biological control agent, Eccritotarsus eichhorniae Henry (Heteroptera: Miridae), because they are both sap suckers. On the other hand, N. eichhorniae is the most widespread and thus the most important biological control agent for water hyacinth. The aim of this study, then, was to determine the interactions between the two sap-sucking agents in South Africa that presumably occupy similar niches on the plant, and the interaction between M. scutellerais and N. eichhorniae, the most widely distributed and abundant agent in South Africa. Three experiments were conducted at the Waainek Research Facility at Rhodes University, Grahamstown, Eastern Cape, South Africa. Plants were grown for two weeks and insect species were inoculated singly or in combination. Water hyacinth, plant growth parameters and insect parameters were measured every 14 days for a period of 12 weeks. The results of the study showed that feeding by either E. eichhorniae or M. scutellaris had no effect on the feeding of the other agent. Both agents reduced all the measured plant growth parameters equally, either singly or in combination (i.e. E. eichhorniae or M. scutellaris alone or together). The interaction between the two agents appears neutral and agents are likely to complement each other in the field. Prior feeding by E. eichhorniae or M. scutellaris on water hyacinth did not affect the subsequent feeding by either agent. Megamelus scutellaris prefers healthy fresh water hyacinth plants. In addition, planthoppers performed best in combination with the weevil, especially on plants with new weevil feeding scars. The results of the study showed that M. scutellaris is compatible with other biological control agents of water hyacinth that are already established in South Africa. Therefore, the introduction of M. scutellaris may enhance the biological control of water hyacinth in South Africa.
- Full Text:
- Date Issued: 2018
Yeast-baculovirus synergism: investigating mixed infections for improved management of the false codling moth, Thaumatotibia leucotreta
- Authors: Van der Merwe, Marcél
- Date: 2018
- Subjects: Cryptophlebia leucotreta , Baculoviruses , Yeast , Citrus Diseases and pests , Biological pest control agents , Pests Integrated control
- Language: English
- Type: Master's theses , text
- Identifier: http://hdl.handle.net/10962/62963 , vital:28347
- Description: Thaumatotibia leucotreta (Meyrick) (Lepidoptera: Tortricidae) or otherwise commonly known as the false codling moth is an indigenous pest of the citrus industry in southern Africa. The pest is highly significant as it impacts negatively on the export of fresh citrus fruits from South Africa to international markets. To control T. leucotreta in South Africa, an integrated pest management (IPM) programme has been implemented. One component of this programme is the baculovirus Cryptophlebia leucotreta granulovirus (CrleGV-SA) which has been formulated into the products Cryptogran™ and Cryptex®. It has previously been reported that there is a mutualistic association between Cydia pomonella (L.) (Lepidoptera: Tortricidae) also known as codling moth, and epiphytic yeasts. Cydia pomonella larval feeding galleries were colonised by yeasts and this, in turn, reduced larval mortality and enhanced larval development. It has been demonstrated in laboratory assays and field trials that combining yeast and brown cane sugar with Cydia pomonella granulovirus (CpGV) significantly increased larval mortality and lowered the proportion of injured apple fruit. This suggests that yeasts can enhance the effectiveness of an insect virus in managing pest larvae. In this study, we proposed to determine which species of yeast occur naturally in the digestive tract, frass and on the epidermis of T. leucotreta larvae and to examine whether any of these yeasts, when combined with the CrleGV-SA, have a synergistic effect in increasing mortality of T. leucotreta larvae. Firstly, Navel oranges infested with T. leucotreta larvae were collected from orchards in Sundays River Valley in Eastern Cape of South Africa. Larvae were extracted and analysed for the presence of yeast on their surface, or in their gut and frass. Four yeasts were isolated from T. leucotreta larvae and identified down to species level via PCR amplification and sequencing of internal transcribed spacer (ITS) region and D1/D2 domain of the large subunit (LSU) of rDNA region. These yeasts were isolated from the frass, epidermis and digestive tract of T. leucotreta larvae. The yeast isolates were identified as Meyerozyma caribbica, Pichia kluyveri, Pichia kudriavzevii and Hanseniaspora opuntiae. A yeast preference assay was conducted on female T. leucotreta moths to examine whether any of the isolated yeast species affected their oviposition preference. Navel oranges were inoculated with the isolated yeast species at a concentration of 6 × 108 cells.ml-1. The assay also included a Brewer’s yeast and distilled water control. Pichia kudriavzevii was shown to be the preferred yeast species for oviposition, as significantly more eggs were deposited on Navel oranges inoculated with this yeast compared to the other treatments. Lastly, a detached fruit bioassay was performed to evaluate the efficacy of mixing P. kudriavzevii with CrleGV-SA to enhance T. leucotreta larvae mortality. Pichia kudriavzevii was selected as it was demonstrated as having an effect on the oviposition preference of female T. leucotreta moths. The concentration at which P. kudriavzevii was applied remained the same as in the preference assay while CrleGV-SA was applied at lethal concentration required to kill 50 % of the population (9.31 × 107 OBs.ml-1). Although an increase in larval mortality was observed between CrleGV-SA being applied alone and the yeast/virus mixture, this result was determined not to be statistically significant. The experiments performed in this study provide a platform for further research into the application of a yeast-virus combination as a novel control option for T. leucotreta in the field. , Thesis (MSc) -- Faculty of Science, Biochemistry and Microbiology, 2018
- Full Text:
- Date Issued: 2018
- Authors: Van der Merwe, Marcél
- Date: 2018
- Subjects: Cryptophlebia leucotreta , Baculoviruses , Yeast , Citrus Diseases and pests , Biological pest control agents , Pests Integrated control
- Language: English
- Type: Master's theses , text
- Identifier: http://hdl.handle.net/10962/62963 , vital:28347
- Description: Thaumatotibia leucotreta (Meyrick) (Lepidoptera: Tortricidae) or otherwise commonly known as the false codling moth is an indigenous pest of the citrus industry in southern Africa. The pest is highly significant as it impacts negatively on the export of fresh citrus fruits from South Africa to international markets. To control T. leucotreta in South Africa, an integrated pest management (IPM) programme has been implemented. One component of this programme is the baculovirus Cryptophlebia leucotreta granulovirus (CrleGV-SA) which has been formulated into the products Cryptogran™ and Cryptex®. It has previously been reported that there is a mutualistic association between Cydia pomonella (L.) (Lepidoptera: Tortricidae) also known as codling moth, and epiphytic yeasts. Cydia pomonella larval feeding galleries were colonised by yeasts and this, in turn, reduced larval mortality and enhanced larval development. It has been demonstrated in laboratory assays and field trials that combining yeast and brown cane sugar with Cydia pomonella granulovirus (CpGV) significantly increased larval mortality and lowered the proportion of injured apple fruit. This suggests that yeasts can enhance the effectiveness of an insect virus in managing pest larvae. In this study, we proposed to determine which species of yeast occur naturally in the digestive tract, frass and on the epidermis of T. leucotreta larvae and to examine whether any of these yeasts, when combined with the CrleGV-SA, have a synergistic effect in increasing mortality of T. leucotreta larvae. Firstly, Navel oranges infested with T. leucotreta larvae were collected from orchards in Sundays River Valley in Eastern Cape of South Africa. Larvae were extracted and analysed for the presence of yeast on their surface, or in their gut and frass. Four yeasts were isolated from T. leucotreta larvae and identified down to species level via PCR amplification and sequencing of internal transcribed spacer (ITS) region and D1/D2 domain of the large subunit (LSU) of rDNA region. These yeasts were isolated from the frass, epidermis and digestive tract of T. leucotreta larvae. The yeast isolates were identified as Meyerozyma caribbica, Pichia kluyveri, Pichia kudriavzevii and Hanseniaspora opuntiae. A yeast preference assay was conducted on female T. leucotreta moths to examine whether any of the isolated yeast species affected their oviposition preference. Navel oranges were inoculated with the isolated yeast species at a concentration of 6 × 108 cells.ml-1. The assay also included a Brewer’s yeast and distilled water control. Pichia kudriavzevii was shown to be the preferred yeast species for oviposition, as significantly more eggs were deposited on Navel oranges inoculated with this yeast compared to the other treatments. Lastly, a detached fruit bioassay was performed to evaluate the efficacy of mixing P. kudriavzevii with CrleGV-SA to enhance T. leucotreta larvae mortality. Pichia kudriavzevii was selected as it was demonstrated as having an effect on the oviposition preference of female T. leucotreta moths. The concentration at which P. kudriavzevii was applied remained the same as in the preference assay while CrleGV-SA was applied at lethal concentration required to kill 50 % of the population (9.31 × 107 OBs.ml-1). Although an increase in larval mortality was observed between CrleGV-SA being applied alone and the yeast/virus mixture, this result was determined not to be statistically significant. The experiments performed in this study provide a platform for further research into the application of a yeast-virus combination as a novel control option for T. leucotreta in the field. , Thesis (MSc) -- Faculty of Science, Biochemistry and Microbiology, 2018
- Full Text:
- Date Issued: 2018
The isolation, genetic characterisation and biological activity of a South African Phthorimaea operculella granulovirus (PhopGV-SA) for the control of the Potato Tuber Moth, Phthorimaea operculella (Zeller)
- Authors: Jukes, Michael David
- Date: 2015
- Subjects: Potato tuberworm , Potatoes -- Diseases and pests -- South Africa , Baculoviruses , Natural pesticides , Biological pest control agents , Potato tuberworm -- Biological control , Restriction enzymes, DNA
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4147 , http://hdl.handle.net/10962/d1017908
- Description: The potato tuber moth, Phthorimaea operculella (Zeller), is a major pest of potato crops worldwide causing significant damage to both field and stored tubers. The current control method in South Africa involves chemical insecticides, however, there is growing concern on the health and environmental risks of their use. The development of novel biopesticide based control methods may offer a potential solution for the future of insecticides. In this study a baculovirus was successfully isolated from a laboratory population of P. operculella. Transmission electron micrographs revealed granulovirus-like particles. DNA was extracted from recovered occlusion bodies and used for the PCR amplification of the lef-8, lef-9, granulin and egt genes. Sequence data was obtained and submitted to BLAST identifying the virus as a South African isolate of Phthorimaea operculella granulovirus (PhopGV-SA). Phylogenetic analysis of the lef-8, lef-9 and granulin amino acid sequences grouped the South African isolate with PhopGV-1346. Comparison of egt sequence data identified PhopGV-SA as a type II egt gene. A phylogenetic analysis of egt amino acid sequences grouped all type II genes, including PhopGV-SA, into a separate clade from types I, III, IV and V. These findings suggest that type II may represent the prototype structure for this gene with the evolution of types I, III and IV a result of large internal deletion events and subsequent divergence. PhopGV-SA was also shown to be genetically more similar to South American isolates (i.e. PhopGV-CHI or PhopGV-INDO) than it is to other African isolates, suggesting that the South African isolate originated from South America. Restriction endonuclease profiles of PhopGV-SA were similar to those of PhopGV-1346 and PhopGV-JLZ9f for the enzymes BamHI, HindIII, NruI and NdeI. A preliminary full genome sequence for PhopGV-SA was determined and compared to PhopGV-136 with some gene variation observed (i.e. odv-e66 and vp91/p95). The biological activity of PhopGV-SA against P. operculella neonate larvae was evaluated with an estimated LC₅₀ of 1.87×10⁸ OBs.ml⁻¹ being determined. This study therefore reports the characterisation of a novel South African PhopGV isolate which could potentially be developed into a biopesticide for the control of P. operculella.
- Full Text:
- Date Issued: 2015
- Authors: Jukes, Michael David
- Date: 2015
- Subjects: Potato tuberworm , Potatoes -- Diseases and pests -- South Africa , Baculoviruses , Natural pesticides , Biological pest control agents , Potato tuberworm -- Biological control , Restriction enzymes, DNA
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4147 , http://hdl.handle.net/10962/d1017908
- Description: The potato tuber moth, Phthorimaea operculella (Zeller), is a major pest of potato crops worldwide causing significant damage to both field and stored tubers. The current control method in South Africa involves chemical insecticides, however, there is growing concern on the health and environmental risks of their use. The development of novel biopesticide based control methods may offer a potential solution for the future of insecticides. In this study a baculovirus was successfully isolated from a laboratory population of P. operculella. Transmission electron micrographs revealed granulovirus-like particles. DNA was extracted from recovered occlusion bodies and used for the PCR amplification of the lef-8, lef-9, granulin and egt genes. Sequence data was obtained and submitted to BLAST identifying the virus as a South African isolate of Phthorimaea operculella granulovirus (PhopGV-SA). Phylogenetic analysis of the lef-8, lef-9 and granulin amino acid sequences grouped the South African isolate with PhopGV-1346. Comparison of egt sequence data identified PhopGV-SA as a type II egt gene. A phylogenetic analysis of egt amino acid sequences grouped all type II genes, including PhopGV-SA, into a separate clade from types I, III, IV and V. These findings suggest that type II may represent the prototype structure for this gene with the evolution of types I, III and IV a result of large internal deletion events and subsequent divergence. PhopGV-SA was also shown to be genetically more similar to South American isolates (i.e. PhopGV-CHI or PhopGV-INDO) than it is to other African isolates, suggesting that the South African isolate originated from South America. Restriction endonuclease profiles of PhopGV-SA were similar to those of PhopGV-1346 and PhopGV-JLZ9f for the enzymes BamHI, HindIII, NruI and NdeI. A preliminary full genome sequence for PhopGV-SA was determined and compared to PhopGV-136 with some gene variation observed (i.e. odv-e66 and vp91/p95). The biological activity of PhopGV-SA against P. operculella neonate larvae was evaluated with an estimated LC₅₀ of 1.87×10⁸ OBs.ml⁻¹ being determined. This study therefore reports the characterisation of a novel South African PhopGV isolate which could potentially be developed into a biopesticide for the control of P. operculella.
- Full Text:
- Date Issued: 2015
Composition and phenology of insect pests of Capsicum (Solanaceae) cultivated in the Makana District, Eastern Cape Province, South Africa
- Authors: Hepburn, Colleen
- Date: 2008
- Subjects: Insects -- South Africa -- Eastern Cape -- Composition Insects -- South Africa -- Eastern Cape -- Phenology Agricultural pests -- South Africa -- Eastern Cape Peppers -- Diseases and pests -- South Africa -- Eastern Cape Solanaceae -- Diseases and pests -- South Africa -- Eastern Cape Insect pests -- South Africa -- Eastern Cape Insect pests -- Biological control -- South Africa -- Eastern Cape Insect pests -- Control -- Methods -- South Africa -- Eastern Cape Insects -- Host plants -- South Africa -- Eastern Cape Insect-plant relationships -- South Africa -- Eastern Cape
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5656 , http://hdl.handle.net/10962/d1005339
- Description: Capsicum baccatum var. pendulum was first grown in the Makana District in 2005. Extremely little was known about best practices for cultivation or the insects and diseases associated with the crop in this area. The study was conducted during the second year of production, November 2005 and November 2006, in an attempt to identify the composition and phenology of insects occurring on C. baccatum. In the more rural parts of the Eastern Cape, and more particularly in Grahamstown, there are very few industries. With the advent of this new agricultural venture, a processing factory has been opened in Grahamstown creating more than 600 seasonal jobs in the factory and 1000 seasonal jobs on farms for local people. This business enterprise has not only brought about the creation of jobs, but also training and skills development and empowerment, generating much-needed income in this area. An extensive literature review yielded limited information on insect pests associated with Capsicum. Data from a pilot sampling trial undertaken were statistically analyzed to establish the number of plants to be scouted per site and the most effective scouting techniques to use. Based on the data available and insects collected during the pilot sampling trial, a surveillance programme was designed. Five different types of monitoring traps were placed in each of the eight study sites. Collection of trap catches and scouting of fifteen individual plants per site was undertaken on a weekly basis over the 52-week study period. The most commonly occurring potential insect pests were African Bollworm Helicoverpa armigera (Hübner), False Codling Moth Thaumatotibia leucotreta (= Cryptophlebia leucotreta) (Meyrick), Mediterranean Fruit Fly Ceratitis capitata (Wiedemann) and several species of thrips. Population densities of these pests and their phenology on Capsicum were determined. Statistical analyses established the efficacy of the monitoring traps for each pest, tested for differences among and between study sites, calculated an estimate of the number of pods damaged and a measure of plant damage.The results show that the majority of damage caused to the Capsicum baccatum cropping system was due to Mediterranean Fruit Fly populations. It was established that, although African Bollworm and False Codling Moth were present during the study period, their numbers were negligible and only nominal damage was caused by these pests. Damage caused by thrips species was apparent but not quantifiable. Intervention strategies using an Integrated Pest Management approach, are discussed.
- Full Text:
- Date Issued: 2008
- Authors: Hepburn, Colleen
- Date: 2008
- Subjects: Insects -- South Africa -- Eastern Cape -- Composition Insects -- South Africa -- Eastern Cape -- Phenology Agricultural pests -- South Africa -- Eastern Cape Peppers -- Diseases and pests -- South Africa -- Eastern Cape Solanaceae -- Diseases and pests -- South Africa -- Eastern Cape Insect pests -- South Africa -- Eastern Cape Insect pests -- Biological control -- South Africa -- Eastern Cape Insect pests -- Control -- Methods -- South Africa -- Eastern Cape Insects -- Host plants -- South Africa -- Eastern Cape Insect-plant relationships -- South Africa -- Eastern Cape
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5656 , http://hdl.handle.net/10962/d1005339
- Description: Capsicum baccatum var. pendulum was first grown in the Makana District in 2005. Extremely little was known about best practices for cultivation or the insects and diseases associated with the crop in this area. The study was conducted during the second year of production, November 2005 and November 2006, in an attempt to identify the composition and phenology of insects occurring on C. baccatum. In the more rural parts of the Eastern Cape, and more particularly in Grahamstown, there are very few industries. With the advent of this new agricultural venture, a processing factory has been opened in Grahamstown creating more than 600 seasonal jobs in the factory and 1000 seasonal jobs on farms for local people. This business enterprise has not only brought about the creation of jobs, but also training and skills development and empowerment, generating much-needed income in this area. An extensive literature review yielded limited information on insect pests associated with Capsicum. Data from a pilot sampling trial undertaken were statistically analyzed to establish the number of plants to be scouted per site and the most effective scouting techniques to use. Based on the data available and insects collected during the pilot sampling trial, a surveillance programme was designed. Five different types of monitoring traps were placed in each of the eight study sites. Collection of trap catches and scouting of fifteen individual plants per site was undertaken on a weekly basis over the 52-week study period. The most commonly occurring potential insect pests were African Bollworm Helicoverpa armigera (Hübner), False Codling Moth Thaumatotibia leucotreta (= Cryptophlebia leucotreta) (Meyrick), Mediterranean Fruit Fly Ceratitis capitata (Wiedemann) and several species of thrips. Population densities of these pests and their phenology on Capsicum were determined. Statistical analyses established the efficacy of the monitoring traps for each pest, tested for differences among and between study sites, calculated an estimate of the number of pods damaged and a measure of plant damage.The results show that the majority of damage caused to the Capsicum baccatum cropping system was due to Mediterranean Fruit Fly populations. It was established that, although African Bollworm and False Codling Moth were present during the study period, their numbers were negligible and only nominal damage was caused by these pests. Damage caused by thrips species was apparent but not quantifiable. Intervention strategies using an Integrated Pest Management approach, are discussed.
- Full Text:
- Date Issued: 2008