An eco-physiological investigation of fisheries-induced evolution: comparing the resilience of larvae from exploited and unexploited commercial reef fish populations to projected ocean acidification
- Authors: Muller, Cuen
- Date: 2022-04-08
- Subjects: Ocean acidification , Fishes Climatic factors , Fishes Physiology , Fishes Metabolism , Fishes Respiration , Fishes Larvae , Fishery management , Chrysoblephus laticeps (Red roman)
- Language: English
- Type: Doctoral thesis , text
- Identifier: http://hdl.handle.net/10962/232579 , vital:50004 , DOI 10.21504/10962/232579
- Description: It is now accepted that anthropogenic-induced climate change is resulting in unprecedented rates of change to marine environments. Marine organisms are being challenged by rapidly increasing temperatures, acidification, expansion of oxygen dead zones, and higher frequencies and magnitudes of extreme weather events. Exploited fish populations are also undergoing selective harvesting. Certain traits, such as large size, fast growth, and/or bold/active behaviours, are being actively targeted and removed from the population gene pool. This selective removal of individuals may compromise the capacity of fish populations to resist or recover from environmental disturbances and reduce their ability to adapt to a changing environment as many of these traits are heritable. As most marine fishes' embryonic and larval stages represent the period when individuals are most sensitive to environmental disturbances, they are a critical bottleneck to population persistence in the face of exploitation and climate change. This thesis aimed to quantify and compare the metabolic physiology, growth, and development of an exploited and endemic sparid, the roman seabream Chrysoblephus laticeps, during the early larval stages under 1) ocean acidification conditions expected by the year 2100 and 2) from populations experiencing dissimilar rates of exploitation. To quantify and compare the physiology of larvae, adult C. laticeps from an exploited population were captured and field-spawned. Fertilised eggs were placed into either control/present-day conditions (pH = 8.03, pCO2 ≈ 420 μatm) or high-pCO2/hypercapnic treatment conditions (pH = 7.63, pCO2 ≈ 1400 μatm). The metabolic physiology of individual larvae was determined using a novel rolling-regression technique on static respirometry data. Here, estimates of the minimum and maximum oxygen consumption rates (VO2) could be determined with high test-retest reliability. The very early developmental stages (yolk-sac stage) appeared resilient to high pCO2 conditions despite being exposed to treatment conditions throughout the embryonic stage. Preflexion larvae showed sensitivity to treatment conditions by exhibiting reduced metabolic and growth rates, consistent with metabolic depression, associated with environmental stress. However, by the onset of flexion, which coincides with gill development, acid-base regulation, and muscle differentiation, metabolic and growth rates of treatment larvae were significantly greater than that of controls. This suggests that acid-base regulation imposes a high cost to maintain internal pH homeostasis. Importantly, these elevated metabolic costs were likely mediated through increased feeding rates in experimental conditions where food was ad libitum. In natural conditions, where food availability may be varied, high pCO2 conditions could be associated with higher mortality rates. Based on evidence that protected/unexploited populations are more genetically diverse and are composed of individuals representing a greater range of metabolic phenotypes, offspring were collected from a protected population experiencing otherwise similar environmental conditions to the exploited population. Metabolic rates of control larvae were generally similar to those of the exploited population. However, minimum rates of VO2 were typically higher for larvae from the protected population at comparable life stages. Preflexion treatment larvae from the protected population did not appear to undergo a period of reduced metabolism or growth compared to their control counterparts. While metabolic rates at the onset of flexion were significantly higher for treatment larvae, this was not associated with growth differences. Growth over-compensation following periods of growth depression is often associated with deleterious effects, such as organ damage and body or developmental malformations. This suggests somewhat improved resilience to ocean acidification conditions. This thesis found evidence that larval C. laticeps are sensitive to ocean acidification conditions expected by 2100. When this stressor is combined with increasing thermal variability, changing current coastal regimes, and heterogeneous food availability, also expected to occur by 2100, ocean acidification may compromise the population persistence of this species. However, an energetics approach to stress-tolerance suggests that larvae from the protected population may inherently show greater resilience to climate change-related environmental stressors. Evidence that exploitation affects the resilience of fish larvae to climate change highlights the need for an evolutionary approach to fisheries management and the importance of spatial protection in maintaining larger and more resilient populations while providing the raw material essential for adaptation. , Thesis (PhD) -- Faculty of Science, Ichthyology and Fisheries Science, 2022
- Full Text:
Coastal pH variability and the eco-physiological and behavioural response of a coastal fish species in light of future ocean acidification
- Authors: Edworthy, Carla
- Date: 2021
- Subjects: Ocean acidification , Diplodus capensis (Blacktail) , Diplodus -- South Africa -- Algoa Bay , Diplodus -- Metabolism , Diplodus -- Food , Diplodus -- Larvae , Marine ecology -- South Africa -- Algoa Bay , Carbon dioxide -- Physiological effect , Respiration -- Measurement
- Language: English
- Type: text , Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/176793 , vital:42759 , 10.21504/10962/176793
- Description: Ocean acidification (OA) is a global phenomenon referring to a decrease in ocean pH and a perturbation of the seawater carbonate system due to ever-increasing atmospheric CO2 concentrations. In coastal environments, identifying the impacts of OA is complex due to the multiple contributors to pH variability by coastal processes, such as freshwater inflow, upwelling, hydrodynamic processes, and biological activity. The aim of this PhD study was to quantify the local processes occurring in a temperate coastal embayment, Algoa Bay in South Africa, that contribute to pH and carbonate chemistry variability over time (monthly and 24-hour) and space (~10 km) and examine how this variability impacts a local fish species, Diplodus capensis, also commonly known as ‘blacktail’. Algoa Bay, known for its complex oceanography, is an interesting location in which to quantify carbonate chemistry variability. To assess this variability, monitoring sites were selected to coincide with the Algoa Bay Sentinel Site long-term ecological research (LTER) and continuous monitoring (CMP) programmes. The average pH at offshore sites in the bay was 8.03 ± 0.07 and at inshore sites was 8.04 ± 0.15. High pH variability (~0.55–0.61 pH units) was recorded at both offshore (>10 m depth) and inshore sites (intertidal surf zones). Many sites in the bay, especially the atypical site at Cape Recife, exhibit higher than the average pH levels (>8.04), suggesting that pH variability may be biologically driven. This is further evidenced by high diurnal variability in pH (~0.55 pH units). Although the specific drivers of the high pH variability in Algoa Bay could not be identified, baseline carbonate chemistry conditions were identified, which is necessary information to design and interpret biological experiments. Long-term, continuous monitoring is required to improve understanding of the drivers of pH variability in understudied coastal regions, like Algoa Bay. A local fisheries species, D. capensis, was selected as a model species to assess the impacts of future OA scenarios in Algoa Bay. It was hypothesized that this temperate, coastally distributed species would be adapted to naturally variable pH conditions and thus show some tolerance to low pH, considering that they are exposed to minimum pH levels of 7.77 and fluctuations of up to 0.55 pH units. Laboratory perturbation experiments were used to expose early postflexion stage of D. capensis to a range of pH treatments that were selected based on the measured local variability (~8.0–7.7 pH), as well as future projected OA scenarios (7.6–7.2 pH). Physiological responses were estimated using intermittent flow respirometry by quantifying routine and active metabolic rates as well as relative aerobic scope at each pH treatment. The behavioural responses of the larvae were also assessed at each pH treatment, as activity levels, by measuring swimming distance and speed in video-recording experiments, as well as feeding rates. D. capensis had sufficient physiological capacity to maintain metabolic performance at pH levels as low as 7.27, as evidenced by no changes in any of the measured metabolic rates (routine metabolic rate, active metabolic rate, and relative aerobic scope) after exposure to the range of pH treatments (8.02–7.27). Feeding rates of D. capensis were similarly unaffected by pH treatment. However, it appears that subtle increases in activity level (measured by swimming distance and swimming speed experiments) occur with a decrease in pH. These changes in activity level were a consequence of a change in behaviour rather than metabolic constraints. This study concludes, however, that based on the parameters measured, there is no evidence for survival or fitness related consequences of near future OA on D. capensis. OA research is still in its infancy in South Africa, and the potential impacts of OA to local marine resources has not yet been considered in local policy and resource management strategies. Integrating field monitoring and laboratory perturbation experiments is emerging as best practice in OA research. This is the first known study on the temperate south coast of South Africa to quantify local pH variability and to use this information to evaluate the biological response of a local species using relevant local OA scenarios as treatment levels for current and near future conditions. Research on local conditions in situ and the potential impacts of future OA scenarios on socio-economically valuable species, following the model developed in this study, is necessary to provide national policy makers with relevant scientific data to inform climate change management policies for local resources.
- Full Text:
A physiological study on a commercial reef fish to quantify the relationship between exploitation and climate change resilience
- Authors: Duncan, Murray Ian
- Date: 2019
- Subjects: Chrysoblephus laticeps -- Climatic factors , Chrysoblephus laticeps -- Physiology , Sparidae -- South Africa -- Climatic factors , Reef fishes -- South Africa -- Climatic factors , Fish populations -- South Africa -- Climatic factors , Fish populations -- Measurement , Fish populations -- Monitoring , Fisheries -- South Africa -- Environmental aspects , Ocean temperature -- Physiological effect -- South Africa
- Language: English
- Type: text , Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/76541 , vital:30599
- Description: The persistence of harvested fish populations in the Anthropocene will be determined, above all, by how they respond to the interacting effects of climate change and fisheries exploitation. Predicting how populations will respond to both these threats is essential for any adaptive and sustainable management strategy. The response of fish populations to climate change is underpinned by physiological rates and tolerances, and emerging evidence suggests there may be physiological-based selection in capture fisheries. By quantifying important physiological rates of a model species, the endemic seabream, Chrysoblephus laticeps, across ecologically relevant thermal gradients and from populations subjected to varying intensities of commercial exploitation, this thesis aimed to 1) provide the first physiologically grounded climate resilience assessment for a South African linefish species, and 2) elucidate whether exploitation can drive populations to less physiologically resilient states in response to climate change. To identify physiologically limiting sea temperatures and to determine if exploitation alters physiological trait distributions, an intermittent flow respirometry experiment was used to test the metabolic response of spatially protected and exploited populations of C. laticeps to acute thermal variability. Exploited populations showed reduced metabolic phenotype diversity, fewer high-performance aerobic scope phenotypes, and a significantly lower aerobic scope curve across all test temperatures. Although both populations maintained a relatively high aerobic scope across a wide thermal range, their metabolic rates were compromised when extreme cold events were simulated (8 °C), suggesting that predicted future increases in upwelling frequency and intensity may be the primary limiting factor in a more thermally variable future ocean. The increment widths of annuli in the otoliths of C. laticeps from contemporary and historic collections were measured, as a proxy for the annual growth rate of exploited and protected populations. Hierarchical mixed models were used to partition growth variation within and among individuals and ascribe growth to intrinsic and extrinsic effects. The best model for the protected population indicated that the growth response of C. laticeps was poorer during years characterised by a high cumulative upwelling intensity, and better during years characterised by higher mean autumn sea surface temperatures. The exploited population growth chronology was too short to identify an extrinsic growth driver. The growth results again highlight the role of thermal variability in modulating the response of C. laticeps to its ambient environment and indicate that the predicted increases in upwelling frequency and intensity may constrain future growth rates of this species. A metabolic index (ϕ), representing the ratio of O2 supply to demand at various temperatures and oxygen concentrations, was estimated for exploited and protected populations of C. laticeps and used to predict future distribution responses. There was no difference in the laboratory calibrations of ϕ between populations, and all data was subsequently combined into a single piecewise (12 °C) calibrated ϕ model. To predict the distribution of C. laticeps, ϕ was projected across a high-resolution ocean model of the South African coastal zone, and a species distribution model implemented using the random forest algorithm and C. laticeps occurrence points. The future distribution of C. laticeps was estimated by predicting trained models across ocean model projections up to 2100. The best predictor of C. laticeps’ current distribution was minimum monthly ϕ and future predictions indicated only a slight range contraction on either edge of C. laticeps’ distribution by 2100. In order to provide policy makers, currently developing climate change management frameworks for South Africa’s ocean, with a usable output, the results of all research chapters were combined into a marine spatial model. The spatial model identified areas where C. laticeps is predicted to be resilient to climate change in terms of physiology, growth and distribution responses, which can then be prioritised for adaptation measures, such as spatial protection from exploitation. While these results are specific to C. laticeps, the methodology developed to identify areas of climate resilience has broad applications across taxa. From a global perspective, perhaps the most salient points to consider from this case study are the evidence of selective exploitation on physiological traits and the importance of environmental variability, rather than long-term mean climate changes, in affecting organism performance. These ideas are congruent with the current paradigm shift in how we think of the ocean, selective fisheries, and how they relate to organism climate resilience.
- Full Text:
Effects of CO2-induced ocean acidification on the early development, growth, survival and skeletogenesis of the estuarine-dependant sciaenid Argyrosomus japonicus
- Authors: Erasmus, Bernard
- Date: 2018
- Subjects: Argyrosomus , Argyrosomus -- Growth , Argyrosomus -- Mortality , Argyrosomus -- Ecology , Argyrosomus -- Physiology , Ocean acidification , Marine ecology -- South Africa , Carbon dioxide -- Physiological effect
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/60585 , vital:27799
- Description: Although it is increasingly accepted that ocean acidification poses a considerable threat to marine organisms, little is known about the likely response of fishes to this phenomenon. While initial research concluded that adult fishes may be tolerant to changes predicted in the next 300 years, the response of early life stages to end-of-century CO2 levels (~ 1100 µatm according to the IPCC RCP 8.5) remains unclear. To date, literature on the early growth and survival of fishes has yielded conflicting results, suggesting that vulnerability may be species dependant. The paucity of ocean acidification research on fishes is particularly evident when one considers larval skeletogenesis, with no robust studies on its impacts on bone and cartilage development. This study addresses the early life embryogenesis, hatching success, growth, skeletogenesis and survival of an estuarine-dependant species. Dusky kob (Argyrosomus japonicus) were reared in a control (pCO2 = 327.50 ± 80.07 qatm at pH 8.15), intermediate (pCO2 477.40 ± 59.46 qatm at pH 8.03) and high pCO2 treatment (pCO2 910.20 ± 136.45 qatm at pH 7.78) from egg to 29 days post-hatch (dph). Sixty individuals from each treatment were sacrificed at the egg stage and at 2, 6, 13, 18, 21 and 26 dph, measured and stained using an acid-free double- staining solution to prevent the deterioration of calcified matrices in fragile larval skeletons. The proportion of bone and cartilage was quantified at each stage using a novel pixel-counting method. Growth and skeletal development were identical between treatments until the onset of metamorphosis (21 dph). However, from the metamorphosis stage, the growth and skeletal development rate was significantly faster in the intermediate treatment and significantly slower in the high treatment when compared to the control treatment. By 26 dph, A. japonicus reared in high pCO2 were, on average, 47.2% smaller than the control treatment, and the relative proportion of bone in the body was 45.3% lower in the high pCO2 treatment when compared with the control. In addition, none of the fish in the high pCO2 treatment survived after 26 dph. It appears that the combination of the increased energy requirements during metamorphosis and the increased energy cost associated with acid-base regulation may account for reduced growth, skeletogenesis and poor survival in high pCO2. Regardless of the driver, the results of this study suggest that the pCO2 levels predicted for the end of the century may have negative effects on the growth, skeletal development, and survival during metamorphosis.
- Full Text:
The metabolic physiology of early stage Argyrosomus japonicus with insight into the potential effects of pCO2 induced ocean acidification
- Authors: Edworthy, Carla
- Date: 2018
- Subjects: Argyrosomus , Argyrosomus -- Growth , Argyrosomus -- Mortality , Argyrosomus -- Larvae -- Ecology , Ocean acidification , Marine ecology -- South Africa , Carbon dioxide -- Physiological effect
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/51417 , vital:26094
- Description: Ocean acidification is a phenomenon associated with global change and anthropogenic CO2 emissions that is changing the chemistry of seawater. These changes result in elevated pCO2 and reduced pH in seawater and this is impacting marine organisms in various ways. Marine fishes are considered generally tolerant to conditions of ocean acidification; however, these assumptions are based on juvenile and adult fish tolerance and the larval stages have not been frequently assessed. Furthermore, it has been suggested that temperate species, particularly those with an estuarine association, may be tolerant to variable CO2 and pH. This study used an eco-physiological approach to understand how the early life stages of Argyrosomus japonicus, an estuarine dependent marine fisheries species found in warm-temperate regions, may be impacted by ocean acidification. The metabolic response of early stage larvae (hatching to early juvenile stage) was assessed under conditions of elevated pCO2 and reduced pH in a controlled laboratory setting. Small volume static respirometry was used to determine the oxygen consumption rate of larvae raised in three pCO2 treatments including a low (pCO2 = 327.50 ± 80.07 µatm at pH 8.15), moderate (pCO2 477.40 ± 59.46 µatm at pH 8.03) and high treatment (PCO2 910.20 ± 136.45 µatm at pH 7.78). These treatment levels were relevant to the present (low) and projected conditions of ocean acidification for the years 2050 (moderate) and 2100 (high). Prior to experimentation with ocean acidification treatments, baseline metabolic rates and diurnal variation in oxygen consumption rates in early stage A. japonicus was determined. Distinct ontogenetic structuring of metabolic rates was observed in early stage A. japonicus, with no cyclical fluctuations in metabolic rate occurring during the 24 hour photoperiodic cycle. Pre-flexion larvae showed no metabolic response to ocean acidification treatments; however post-flexion stage larvae showed metabolic depression of standard metabolic rate in the moderate (32.5%) and high (9.5%) pCO2 treatments (P = 0.02). Larvae raised in the high pCO2 treatment also showed high levels of mortality with no individuals surviving past the post-flexion stage. Larvae raised in the moderate pCO2 treatment were unaffected. This study concluded that ocean acidification conditions expected for the end of the century will have significant impacts on the metabolism of early stage A. japonicus, which may result in reduced growth, retardation of skeletal development and ultimately survival as a result of increased mortality. Furthermore, the timing of reduced metabolic scope will significantly impact the recruitment ability of A. japonicus larvae into estuarine habitats. This could ultimately impact the sustainability of A. japonicus populations. Most importantly, this study highlighted the need to consider the combined effect of ontogeny and life-history strategy when assessing the vulnerability of species to ocean acidification.
- Full Text:
Modelling the spatial and genetic response of the endemic sparid: Polysteganus praeorbitalis (Pisces: Sparidae) to climate change in the Agulhas Current system
- Authors: Isemonger, Devin Neil
- Date: 2014
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/54509 , vital:26576
- Description: The Scotsman Seabream, Polysteganus praeorbitalis, is one of several large, slow-growing members of the Sparidae family of fishes endemic to the Agulhas Current system in the Western Indian Ocean (WIO). Relatively little research has been conducted on this species despite its importance to both recreational and commercial line fisheries in South Africa and the drastic decline in catch per unit effort (CPUE) that has been recorded since the 1940s. Changing sea temperatures as a result of global climate change are further expected to affect the distribution and abundance of many fish species based on their thermal tolerances, life histories and population structures. The ability of these species to shift their distribution and adapt to new environments and thermal conditions will depend to some degree on the levels of genetic variation and gene flow, within and between populations. A combined approach using species distribution modelling and genetic analyses may prove to be a useful tool in investigating the potential effects of climate change on the distribution and genetic diversity of species. An ensemble species distribution model (SDM) based on 205 occurrence records and 30 years of Reynolds Optimum Interpolated (OI) sea surface temperature data was constructed to predict the distributional response of P. praeorbitalis to climate change in the Agulhas Current system. The ensemble SDM displayed a true skill statistic (TSS) of 0.975 and an area under the receiver operating curve (ROC) of 0.999, indicating good model fit. Autumn and winter minimum temperatures, as well as bathymetry, were the most important predictor variables in the majority of models, indicating that these variables may directly constrain the distribution of P. praeorbitalis. In particular, the southern range edge of this species appeared to be constrained by autumn and winter minima, with high model agreement on this range edge. Conversely, the northern range limit showed poor model agreement leading to a gradual reduction in occurrence. This indicates that this range edge may be constrained by other factors not included in the models such as species interactions. The ensemble SDM projected the current range of P. praeorbitalis to be 1500 km², smaller than the published range for this species. The model underestimated the northern range edge of this species by approximately 5° latitude when binary transformed. This is probably due to the rarity of this species in the landings of the Mozambican linefishery, which was assumed to be an indication of low abundance of P. praeorbitalis in these waters. The absence of a specimen to verify the published northern range edge of this species indicates that the northern range edge produced by this model is likely to be closer to the actual range limit of the species. A range contraction of 30% occurring at both the northern and southern edge of P. praeorbitalis’ range and range fragmentation occurring, towards its northern range edge by 2030, was predicted. These changes are modelled to be the results of cooling related to the intensification of the Port Alfred upwelling cell and of warming predicted north of the Natal Bight and in southern Mozambique. Genetic analyses of the nuclear DNA (nDNA) S7 intron 1 and mitochondrial DNA (mtDNA) control region genes were carried out using 118 tissue samples of P. praeorbitalis collected at four main localities: the Eastern Cape, Transkei, southern KwaZulu-Natal and northern KwaZulu-Natal. Analyses of genetic diversity levels revealed relatively low diversity in the mtDNA dataset (Hd = 0.488; π = 0.004) and moderate levels of diversity in the nDNA dataset (Ad = 0.922; π = 0.005). The low levels of diversity observed in the mtDNA dataset might be explained by a number of factors, including high variation in spawning success, the negative effects of over-harvesting, or a recent population bottleneck. The last explanation is supported by characteristic star-shaped haplotype networks and unimodal mismatch distributions displayed by both datasets. These results, in conjunction with a significant (p = 0.005) negative Tajimas D value (-2.029) in the mtDNA dataset and significant (p = 0.0005) negative Fu’s F statistic in both the nDNA (F = -26.5) and mtDNA (F = -11.9) datasets, provide strong evidence for a recent population expansion after a bottleneck event in this species. Spatially, mtDNA diversity was highest in the Eastern Cape and lowest in the middle localities, while nDNA diversity showed the opposite pattern. These results may be indicative of differences in the sex ratio between localities, possibly as a result of the protogynous hermaphroditism that has been postulated for this species. Although pairwise comparisons and exact tests of population differentiation revealed no significant geneticdifferentiation between populations in the mtDNA dataset, there was some evidence of low levels of differentiation in the nDNA dataset. This occurred for comparisons between the Eastern Cape and Transkei (Fst = 0.039; p <0.05), and the northern KwaZulu-Natal (Fst = 0.045; p < 0.05).. This might be the result of one or a combination of factors including the effects of the Port Alfred upwelling cell on dispersal and gene flow, or the possibility of more than one spawning ground for this species promoting sub-structuring. A SAMOVA analyses run on the nDNA dataset maximised variance by grouping the Eastern Cape and southern KwaZulu-Natal together and Transkei and northern KwaZulu-Natal together in two groups. This revealed no evidence of spatial structure (p = 0.36), with only 3.30% of variation explained by this grouping. The removal of individuals below the estimated length at 50% maturity in the nDNA dataset, in order to test for temporal structure, resulted in stronger evidence of differentiation between the Eastern Cape and all other localities: Transkei (Fst = 0.081; p< 0.05), southern KwaZulu-Natal (Fst = 0.031; p<0.05), and northern KwaZulu-Natal (Fst = 0.078; p< 0.05). This indicates that some temporal genetic structure may exist between age classes within this species. The differentiation observed between the Eastern Cape and other localities, coupled with the high percentage of private haplotypes in the mtDNA dataset in this locality, indicates that this area is where P. praeorbitalis is most vulnerable to the potential negative effects of climate change on its genetic diversity. However, the vast majority of this species genetic diversity appears to reside towards the centre of its range where it is most abundant and the lack of strong genetic structure indicates high levels of gene flow. In conclusion, while P. praeorbitalis is vulnerable to range loss as a result of climate change, its genetic diversity is unlikely to be greatly affected.
- Full Text:
The genetic stock structure and distribution of Chrysoblephus Puniceus, a commercially important transboundary linefish species, endemic to the South West Indian Ocean
- Authors: Duncan, Murray Ian
- Date: 2014
- Subjects: Sparidae , Fishes -- Indian Ocean , Fish populations , Fishery management , Fish stock assessment -- South Africa , Fish stock assessment -- Mozambique , Overfishing , Habitat conservation , Fishes -- Genetics , Fishes -- Climatic factors , Fishes -- Variation , Fishes -- Migration
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5360 , http://hdl.handle.net/10962/d1011868 , Sparidae , Fishes -- Indian Ocean , Fish populations , Fishery management , Fish stock assessment -- South Africa , Fish stock assessment -- Mozambique , Overfishing , Habitat conservation , Fishes -- Genetics , Fishes -- Climatic factors , Fishes -- Variation , Fishes -- Migration
- Description: Chrysoblephus puniceus is an over-exploited linefish species, endemic to the coastlines off southern Mozambique and eastern South Africa. Over-exploitation and habitat loss are two of the biggest threats to the sustainability of fisheries globally. Assessing the genetic stock structure (a prerequisite for effective management) and predicting climate related range changes will provide a better understanding of these threats to C. puniceus which can be used to improve the sustainability of the fishery. Two hundred and eighty four genetic samples were collected from eight sampling sites between Ponta da Barra in Mozambique and Coffee Bay in South Africa. The mitochondrial control region and ten microsatellite loci were amplified to analyse the stock structure of C. puniceus. The majority of microsatellite and mtDNA pairwise population comparisons were not significant (P > 0.05) although Xai Xai and Inhaca populations had some significant population comparisons for mtDNA (P < 0.05). AMOVA did not explain any significant variation at the between groups hierarchical level for any pre-defined groupings except for a mtDNA grouping which separated out Xai Xai and Inhaca from other sampling sites. SAMOVA, isolation by distance tests, structure analysis, principle component analysis and spatial autocorrelation analysis all indicated a single population of C. puniceus as being most likely. The migrate-n analysis provided evidence of current driven larval transport, with net migration rates influenced by current dynamics.Two hundred and thirty six unique presence points of C. puniceus were correlated with seasonal maximum and minimum temperature data and bathymetry to model the current distribution and predict future distribution changes of the species up until 2030. Eight individual species distribution models were developed and combined into a mean ensemble model using the Biomod2 package. Winter minimum temperature was the most important variable in determining models outputs. Overall the ensemble model was accurate with a true skills statistic score of 0.962. Binary transformed mean ensemble models predicted a northern and southern range contraction of C. puniceus' distribution of 15 percent; by 2030. The mean ensemble probability of occurrence models indicated that C. puniceus' abundance is likely to decrease off the southern Mozambique coastline but remain high off KwaZulu-Natal. The results of the genetic analysis support the theory of external recruitment sustaining the KwaZulu Natal fishery for C. puniceus. While the high genetic diversity and connectivity may make C. puniceus more resilient to disturbances, the loss of 15 percent; distribution and 11 percent; genetic diversity by 2030 will increase the species vulnerability. The decrease in abundance of C. puniceus off southern Mozambique together with current widespread exploitation levels could result in the collapse of the fishery. A single transboundary stock of C. puniceus highlights the need for co-management of the species. A combined stock assessment between South Africa and Mozambique and the development of further Marine Protected Areas off southern Mozambique are suggested as management options to minimise the vulnerability of this species.
- Full Text: