Contributions of inshore and offshore sources of primary production to the foodweb, and the trophic connectivity between various habitats along a depth-gradient, in Sodwana Bay, Kwazulu-Natal, South Africa
- Authors: Parkinson, Matthew Cameron
- Date: 2013
- Subjects: Marine ecology -- South Africa -- Sodwana Bay , Food chains (Ecology) -- South Africa -- Sodwana Bay , Coastal ecology -- South Africa -- Sodwana Bay , Stable isotopes , Dinoflagellates , Marine algae
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5179 , http://hdl.handle.net/10962/d1001630 , Marine ecology -- South Africa -- Sodwana Bay , Food chains (Ecology) -- South Africa -- Sodwana Bay , Coastal ecology -- South Africa -- Sodwana Bay , Stable isotopes , Dinoflagellates , Marine algae
- Description: Sodwana Bay, situated within the iSimangaliso Wetland Park, is ecologically important as it contains high-latitude corals and the most southerly known population of coelacanths. This thesis utilised stable isotope and lipid analyses to investigate the trophic ecology of the area, in particular, understanding the relative contribution of inshore and offshore primary production to consumers inhabiting intertidal and shallow subtidal, coral reef, deep reef, canyon head and pelagic habitats. Seaweeds, excluding certain species of red seaweeds with highly depleted carbon signatures, and phytoplankton, such as diatoms, were found to be the principal sources of primary production for all consumers. Offshore production was typified by dinoflagellates. Particulate organic matter (POM) was spatio-temporally variable. Three distinct productivity periods related to nutrient cycling were noted with enriched carbon signatures and higher organic matter loads associated with warmer water. Inshore primary production was an important source of carbon to consumers in all habitats with the exception of zooplankton that were more reliant on pelagic primary production. Benthic invertebrates reflected a gradient in the utilisation of inshore production, due to the reduced availability of this source further offshore. Consumers at the furthest sites offshore were found to include a substantial quantity of inshore-derived production in their diets. Fishes, which are more mobile, were found to incorporate a similar proportion of inshore production into their diets regardless of where they were collected from.
- Full Text:
- Date Issued: 2013
- Authors: Parkinson, Matthew Cameron
- Date: 2013
- Subjects: Marine ecology -- South Africa -- Sodwana Bay , Food chains (Ecology) -- South Africa -- Sodwana Bay , Coastal ecology -- South Africa -- Sodwana Bay , Stable isotopes , Dinoflagellates , Marine algae
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5179 , http://hdl.handle.net/10962/d1001630 , Marine ecology -- South Africa -- Sodwana Bay , Food chains (Ecology) -- South Africa -- Sodwana Bay , Coastal ecology -- South Africa -- Sodwana Bay , Stable isotopes , Dinoflagellates , Marine algae
- Description: Sodwana Bay, situated within the iSimangaliso Wetland Park, is ecologically important as it contains high-latitude corals and the most southerly known population of coelacanths. This thesis utilised stable isotope and lipid analyses to investigate the trophic ecology of the area, in particular, understanding the relative contribution of inshore and offshore primary production to consumers inhabiting intertidal and shallow subtidal, coral reef, deep reef, canyon head and pelagic habitats. Seaweeds, excluding certain species of red seaweeds with highly depleted carbon signatures, and phytoplankton, such as diatoms, were found to be the principal sources of primary production for all consumers. Offshore production was typified by dinoflagellates. Particulate organic matter (POM) was spatio-temporally variable. Three distinct productivity periods related to nutrient cycling were noted with enriched carbon signatures and higher organic matter loads associated with warmer water. Inshore primary production was an important source of carbon to consumers in all habitats with the exception of zooplankton that were more reliant on pelagic primary production. Benthic invertebrates reflected a gradient in the utilisation of inshore production, due to the reduced availability of this source further offshore. Consumers at the furthest sites offshore were found to include a substantial quantity of inshore-derived production in their diets. Fishes, which are more mobile, were found to incorporate a similar proportion of inshore production into their diets regardless of where they were collected from.
- Full Text:
- Date Issued: 2013
Population structure, growth and recruitment of two exploited infralittoral molluscs (Haliotis midae and Turbo sarmaticus) along the south east coast, South Africa
- Authors: Proudfoot, Lee-Anne
- Date: 2007
- Subjects: Abalones -- South Africa , Abalones -- Growth -- South Africa , Turbinidae -- South Africa , Mollusks -- South Africa
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5744 , http://hdl.handle.net/10962/d1005430 , Abalones -- South Africa , Abalones -- Growth -- South Africa , Turbinidae -- South Africa , Mollusks -- South Africa
- Description: The two most frequently exploited species along the south east coast of South Africa are the gastropods, Haliotis midae (abalone) and Turbo sarmaticus (alikreukel). H. midae is a high valued commercial species, and suffers intense levels of illegal fishing. T. sarmaticus however, has no commercial value but is the preferred food item for impoverished subsistence communities. Owing to the fact that no legal commercial fishery exists for either species along the south coast, very few studies have been undertaken, especially in the heavily exploited infralittoral. Infralittoral size frequency distributions for both species revealed significant variation in density and size among sites of varying exploitation pressure. Densities ranged between 0 – 2.23 m⁻² (H. midae) and 0.03 – 4.93 m⁻² (T. sarmaticus) and maximum shell lengths ranged from 49.4 – 153.5 mm (H. midae) and 28.3 – 104.4 mm (T. sarmaticus). Relatively high densities and large sizes were found in marine reserves and secluded areas, and low densities and small sizes at sites near to large population centres and within the former Ciskei homeland region. Mean size of the largest 10% of the population, total density and sexually mature density were significantly related to exploitation predictors for both species. In addition, densities of H. midae juveniles were significantly related to exploitation predictors, suggesting that recruitment may be suppressed at the most exploited sites. Exploitation of T. sarmaticus tended to be localized with refuge and subtidal populations persisting. H. midae exploitation was however, far more extensive and intense. Growth of H. midae was investigated using three methods; mark-recapture, cohort analysis and growth banding analysis at Kowie Rocks, Port Alfred. The most useful of these methods for determining growth was a new technique described for growth banding analysis; which was validated using cohort analysis and measurements of shells of known age. This technique was less time consuming and labour intensive than previously described methods. Abalone growth was best described by the Schnute (1981) growth function. Systematic geographic variation in growth was observed for 10 sites along the South African coastline. Significant differences in growth among sites existed for animals between 0-4 years (P < 0.0001) and 4-6 years (P < 0.0001), and in the mean maximum sizes attained (P < 0.001). In general, abalone from the south east/east coast were found to have faster growth rates, smaller mean maximum sizes and attained sexual maturity earlier than those along the south west/ west coast. Haliotis midae recruit and juvenile densities were found to differ significantly among sites of varying exploitation pressure (P < 0.0001) and among months for recruit densities (P < 0.001). Exploited sites had low recruit and juvenile densities compared to unexploited sites and peak recruitment occurred during October/ November 2005. Recruit densities were significantly related to infralittoral adult densities during two of the three sampling months (P<0.05), when recruitment was low. No relationship was observed during the period of high recruitment, with all sites receiving high recruit densities. It was concluded that variation in recruit densities was the result of a combination of both density-dependent relationships (i.e. local spawner density and temporal variability in recruitment intensity) and the possible dispersal capabilities of H. midae. In addition, it was concluded that at present recruitment overfishing was not occurring along the south east coast. Post-recruitment mortality rates were variable but relatively constant, with hypothetical percentage survival and density curves revealing high rates and similar mortality curves among sites. Variation in juvenile densities was consequently a result of initial recruit densities and not variation in post-recruitment mortality. T. sarmaticus populations were found to be regionally sustainable and persisted along the south east coast due to adjacent intertidal and subtidal refuge populations. However, H. midae populations are becoming decimated along the south east coast. From the information obtained in this study new management proposals were suggested and discussed, such as closed areas and region-based management fisheries together with stock enhancement. These suggestions may prove to be feasible alternatives to present management strategies.
- Full Text:
- Date Issued: 2007
- Authors: Proudfoot, Lee-Anne
- Date: 2007
- Subjects: Abalones -- South Africa , Abalones -- Growth -- South Africa , Turbinidae -- South Africa , Mollusks -- South Africa
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5744 , http://hdl.handle.net/10962/d1005430 , Abalones -- South Africa , Abalones -- Growth -- South Africa , Turbinidae -- South Africa , Mollusks -- South Africa
- Description: The two most frequently exploited species along the south east coast of South Africa are the gastropods, Haliotis midae (abalone) and Turbo sarmaticus (alikreukel). H. midae is a high valued commercial species, and suffers intense levels of illegal fishing. T. sarmaticus however, has no commercial value but is the preferred food item for impoverished subsistence communities. Owing to the fact that no legal commercial fishery exists for either species along the south coast, very few studies have been undertaken, especially in the heavily exploited infralittoral. Infralittoral size frequency distributions for both species revealed significant variation in density and size among sites of varying exploitation pressure. Densities ranged between 0 – 2.23 m⁻² (H. midae) and 0.03 – 4.93 m⁻² (T. sarmaticus) and maximum shell lengths ranged from 49.4 – 153.5 mm (H. midae) and 28.3 – 104.4 mm (T. sarmaticus). Relatively high densities and large sizes were found in marine reserves and secluded areas, and low densities and small sizes at sites near to large population centres and within the former Ciskei homeland region. Mean size of the largest 10% of the population, total density and sexually mature density were significantly related to exploitation predictors for both species. In addition, densities of H. midae juveniles were significantly related to exploitation predictors, suggesting that recruitment may be suppressed at the most exploited sites. Exploitation of T. sarmaticus tended to be localized with refuge and subtidal populations persisting. H. midae exploitation was however, far more extensive and intense. Growth of H. midae was investigated using three methods; mark-recapture, cohort analysis and growth banding analysis at Kowie Rocks, Port Alfred. The most useful of these methods for determining growth was a new technique described for growth banding analysis; which was validated using cohort analysis and measurements of shells of known age. This technique was less time consuming and labour intensive than previously described methods. Abalone growth was best described by the Schnute (1981) growth function. Systematic geographic variation in growth was observed for 10 sites along the South African coastline. Significant differences in growth among sites existed for animals between 0-4 years (P < 0.0001) and 4-6 years (P < 0.0001), and in the mean maximum sizes attained (P < 0.001). In general, abalone from the south east/east coast were found to have faster growth rates, smaller mean maximum sizes and attained sexual maturity earlier than those along the south west/ west coast. Haliotis midae recruit and juvenile densities were found to differ significantly among sites of varying exploitation pressure (P < 0.0001) and among months for recruit densities (P < 0.001). Exploited sites had low recruit and juvenile densities compared to unexploited sites and peak recruitment occurred during October/ November 2005. Recruit densities were significantly related to infralittoral adult densities during two of the three sampling months (P<0.05), when recruitment was low. No relationship was observed during the period of high recruitment, with all sites receiving high recruit densities. It was concluded that variation in recruit densities was the result of a combination of both density-dependent relationships (i.e. local spawner density and temporal variability in recruitment intensity) and the possible dispersal capabilities of H. midae. In addition, it was concluded that at present recruitment overfishing was not occurring along the south east coast. Post-recruitment mortality rates were variable but relatively constant, with hypothetical percentage survival and density curves revealing high rates and similar mortality curves among sites. Variation in juvenile densities was consequently a result of initial recruit densities and not variation in post-recruitment mortality. T. sarmaticus populations were found to be regionally sustainable and persisted along the south east coast due to adjacent intertidal and subtidal refuge populations. However, H. midae populations are becoming decimated along the south east coast. From the information obtained in this study new management proposals were suggested and discussed, such as closed areas and region-based management fisheries together with stock enhancement. These suggestions may prove to be feasible alternatives to present management strategies.
- Full Text:
- Date Issued: 2007
The effects of the invasive mussel mytilus galloprovincialis and human exploitation on the indigenous mussel Perna perna on the South Coast of South Africa
- Authors: Rius Viladomiu, Marc
- Date: 2005
- Subjects: Mussels -- South Africa , Perna -- South Africa , Mytilus galloprovincialis -- South Africa , Mytilidae -- South Africa , Biological invasions , Marine resources conservation -- South Africa
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5684 , http://hdl.handle.net/10962/d1005370 , Mussels -- South Africa , Perna -- South Africa , Mytilus galloprovincialis -- South Africa , Mytilidae -- South Africa , Biological invasions , Marine resources conservation -- South Africa
- Description: In South Africa, the indigenous mussel Perna perna is threatened by both an invasive species and excessive human exploitation. The Mediterranean mussel Mytilus galloprovincialis is an invasive species that has been introduced to many parts of the world. In South Africa, this species arrived in the 1970s and spread rapidly along the west coast where today it is the dominant mussel species. Along the west coast, M. galloprovincialis is competitively superior in all aspects to the indigenous mussel species, and, as a result, has displaced some of them. On the south coast, M. galloprovincialis found more oligotrophic waters, higher species richness, and a stronger competitor in the indigenous mussel P. perna. The rate of spread of M. galloprovincialis along the south coast has decreased over the last 10 years and the present eastern limit of its distribution in South African is East London. On the south coast, M. galloprovincialis has not yet completely replaced P. perna; instead, the two exhibit spatial segregation, with P. perna dominating the low shore, M. galloprovincialis the high shore and an overlap zone between the two. An experiment on competition was carried out at one site on the south coast. The results showed that, on the low shore, P. perna is a more dominant competitor for space than M. galloprovincialis. Also byssus attachment of the two species differs, P. perna being much stronger than M. galloprovincialis, which suffers high mortality due to wave action on the low shore, especially in monospecific beds. As a result, mortality of M. galloprovincialis through wave action is reduced by the presence of P. perna, which seems to confer protection against dislodgement. However, in the absence of strong wave action, P. perna competitively excludes M. galloprovincialis. Human exploitation along 160 km of coast was examined by sampling mussel populations and using aerial surveys to determine where harvesters were distributed. Collectors did not seem to discriminate between species. The study has shown that higher abundances of mussels were found in protected or inaccessible sites, while in unprotected sites mussels were scarce. Coastal nature reserves are being proven to be effective in protecting mussel populations.
- Full Text:
- Date Issued: 2005
- Authors: Rius Viladomiu, Marc
- Date: 2005
- Subjects: Mussels -- South Africa , Perna -- South Africa , Mytilus galloprovincialis -- South Africa , Mytilidae -- South Africa , Biological invasions , Marine resources conservation -- South Africa
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5684 , http://hdl.handle.net/10962/d1005370 , Mussels -- South Africa , Perna -- South Africa , Mytilus galloprovincialis -- South Africa , Mytilidae -- South Africa , Biological invasions , Marine resources conservation -- South Africa
- Description: In South Africa, the indigenous mussel Perna perna is threatened by both an invasive species and excessive human exploitation. The Mediterranean mussel Mytilus galloprovincialis is an invasive species that has been introduced to many parts of the world. In South Africa, this species arrived in the 1970s and spread rapidly along the west coast where today it is the dominant mussel species. Along the west coast, M. galloprovincialis is competitively superior in all aspects to the indigenous mussel species, and, as a result, has displaced some of them. On the south coast, M. galloprovincialis found more oligotrophic waters, higher species richness, and a stronger competitor in the indigenous mussel P. perna. The rate of spread of M. galloprovincialis along the south coast has decreased over the last 10 years and the present eastern limit of its distribution in South African is East London. On the south coast, M. galloprovincialis has not yet completely replaced P. perna; instead, the two exhibit spatial segregation, with P. perna dominating the low shore, M. galloprovincialis the high shore and an overlap zone between the two. An experiment on competition was carried out at one site on the south coast. The results showed that, on the low shore, P. perna is a more dominant competitor for space than M. galloprovincialis. Also byssus attachment of the two species differs, P. perna being much stronger than M. galloprovincialis, which suffers high mortality due to wave action on the low shore, especially in monospecific beds. As a result, mortality of M. galloprovincialis through wave action is reduced by the presence of P. perna, which seems to confer protection against dislodgement. However, in the absence of strong wave action, P. perna competitively excludes M. galloprovincialis. Human exploitation along 160 km of coast was examined by sampling mussel populations and using aerial surveys to determine where harvesters were distributed. Collectors did not seem to discriminate between species. The study has shown that higher abundances of mussels were found in protected or inaccessible sites, while in unprotected sites mussels were scarce. Coastal nature reserves are being proven to be effective in protecting mussel populations.
- Full Text:
- Date Issued: 2005
- «
- ‹
- 1
- ›
- »