Quantification of water resources uncertainties in two sub-basins of the Limpopo River basin
- Authors: Oosthuizen, Nadia
- Date: 2018
- Subjects: Hydrologic models -- Limpopo River Watershed , Water-supply -- Limpopo River Watershed , Water-supply -- Management , Sustainable development , Rain and rainfall -- Mathematical models , Runoff -- Mathematical models , Reservoirs -- Limpopo River Watershed
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/63267 , vital:28388
- Description: The demand for water is rapidly growing, placing more strain on access to the resources and subsequently its management. For sustainable management, there is a need to accurately quantify the available water resources. Unfortunately, the data required for such assessments are frequently far from sufficient in terms of availability and quality, especially in southern Africa. In the absence of historical observed data, models are generally used to describe the different hydrological processes and generate data and information that will inform management and policy decision making. Ideally, any hydrological model should be based on a sound conceptual understanding of the processes in the basin and be backed by quantitative information for the parameterization of the model. Such data is however, often inadequate in many sub-basins necessitating the incorporation of the uncertainty related to the estimation process. Model parameter estimation and input data are significant sources of uncertainty that should be quantified. Also, in southern Africa water use data are unreliable because available databases consist of licensed information and actual use is generally unknown. In this study, the water resources of two sub-basins of the Limpopo River basin – the Mogalakwena in South Africa and the Shashe shared between Botswana and Zimbabwe – are estimated. The study assessed how uncertainties in the Pitman model parameterisation and input water use data affect the estimation of surface water resources of the selected sub-basins. Farm reservoirs and irrigated areas data from various sources were collected and used to run the Pitman model. Results indicate that the total model output uncertainty is higher for the Shashe sub-basin which is more data scarce than the Mogalakwena sub-basin. The study illustrates the importance of including uncertainty in the water resources assessment process to provide baseline data for decision making in resource management and planning. The study reviews existing information sources associated with the quantification of water balance components and gives an update of water resources of the sub-basin. The flows generated by the model at the outlet of the basin were between 22.6 Mm3 and 24.7 Mm3 per month when incorporating uncertainty to the main physical runoff generating parameters. The total predictive uncertainty of the model increased to between 22.2 Mm3 and 25.0 Mm3 when anthropogenic water use data such as small farm and large reservoirs and irrigation were included. The flows generated for Shashe was between 11.7 Mm3 and 14.5 Mm3 per month when incorporating uncertainty to the main physical runoff generating parameters. The predictive uncertainty of the model changed to 11.7 Mm3 and 17.7 Mm3 after the water use uncertainty was added. However, it is expected that the uncertainty could be reduced by using higher resolution remote sensing imagery.
- Full Text:
- Date Issued: 2018
Understanding and quantifying channel transmission loss processes in the Limpopo River Basin
- Authors: Mvandaba, Vuyelwa
- Date: 2018
- Subjects: Water-supply -- Management , Water-supply -- Limpopo River Watershed , Alluvium -- Limpopo River Watershed , Streamflow -- Limpopo River Watershed
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/63797 , vital:28490
- Description: Water availability is one of the major societal issues facing the world. The ability to understand and quantify the impact of key hydrological processes on the availability of water resources is therefore integral to ensuring equitable and sustainable resource management. A review of previous hydrological studies conducted in the Limpopo River Basin has revealed a gap in the understanding of surface water-groundwater interactions, particularly channel transmission loss processes. These earlier studies, focused largely on the Limpopo River’s main stem, have attributed the existence of these streamflow losses to the presence of significant alluvial aquifers and indicated that the losses account for about 30 percent (or 1000 Mm3 a-1) of the basin’s water balance. The work conducted in this dissertation reports on the delineation of alluvial aquifers across three sub-basins of the Limpopo River Basin namely, the Mokolo (South Africa), Motloutse (Botswana) and Mzingwane (Zimbabwe) sub-basins and the estimation of potential channel transmission losses based on the alluvial aquifer properties. Additionally, an assessment of the different approaches that can be applied to simulate these channel transmission losses in the Pitman Model is presented. To delineate alluvial aquifers, general land cover classes including alluvial aquifers were produced from Landsat-8 imagery through image classification. The areal extent of the delineated alluvial aquifers was calculated using ArcMap 10.3. To quantify channel transmission losses and determine the effects on regional water resources, three approaches using the Pitman model were applied. The three approaches include an explicit transmission loss function, the use of a wetland function to represent channel-floodplain storage exchanges and the use of a ‘dummy’ reservoir to represent floodplain storage and evapotranspiration losses. Results indicate that all three approaches were able to simulate channel transmission losses, although with differing magnitudes. Observed monthly flow data were used to as a means of validating loss simulations however for each sub-basin, medium and low flows were over-simulated which accounts for water uses that were inefficiently represented due to lack of data. Knowledge of the structure of the transmission loss function dictates that it is better at representing the dynamics of channel transmission losses, as it takes into account the contribution of losses to groundwater recharge whereas the other two functions simply store water and release it back to the channel. Overall, the hydrological modelling results demonstrate the potential of each approach in reproducing the dynamics of channel transmission losses between channel and alluvial aquifer within an existing sub-basin scale hydrological model. It is believed that better quantification of losses and more efficient qualitative determination of the function which best represents transmission losses, can be attained with more reliable observed data. In conclusion, a study of this nature can be beneficial to water resource estimation programmes as it highlights the uncertainties related with quantifying channel transmission loss processes in a semi-arid environment.
- Full Text:
- Date Issued: 2018