Quinolone-Pyrazinamide Derivatives: synthesis, characterisation, in silico ADME analysis and in vitro biological evaluation against Mycobacterium tuberculosis
- Authors: Rukweza, Kudakwashe Gerald
- Date: 2023-10-13
- Subjects: Quinolone antibacterial agents , Mycobacterium tuberculosis , Antitubercular agents , Tuberculosis Chemotherapy , Drug resistance , Moxifloxacin , Isoniazid
- Language: English
- Type: Academic theses , Master's theses , text
- Identifier: http://hdl.handle.net/10962/390901 , vital:68596
- Description: Tuberculosis is one of the leading causes of death worldwide caused by an infectious species, Mycobacterium tuberculosis (Mtb). Some of the factors that contribute to the prevalence of this disease include the complexity of diagnosis, prolonged period of therapy, side effects associated with current TB drugs, the prevalence of resistance against the current treatment options and a high incidence of co-infection with HIV/AIDS. Thus, there is a need for new alternative drugs to provide safer and shorter treatment therapy options that are not susceptible to the development of drug resistance. In this project, we focus our attention on the quinolone pharmacophore. Quinolones are currently used as alternative options in the treatment of resistant strains of Mtb. Previous work pertaining to quinolone-isoniazid hybrid compounds showed promising in vitro activity against the H37Rv strain of Mtb and served as the inspiration to pursue this project. The journey commenced with the synthesis of quinolone-pyrazinamide hybrid compounds (Figure 3.1). These compounds were synthesised, through the attachment of the quinolone and the pyrazinamide entity through a hydrazine linker. The synthesised compounds were purified, and their structural identity confirmed using common spectroscopic techniques including 1H and 13C NMR, infra-red (IR) and mass spectrometry. In vitro biological assays were performed by testing for the activity against the H37RvMA strain of Mtb. The bioassays were performed in triplicates to ensure the accuracy of the results. Moxifloxacin and isoniazid were tested as control compounds. Finally, the resultant compounds were profiled in silico for physicochemical and ADMET properties using open access software SwissADME. All the synthesised compounds 3.8a-f showed no activity against H37RvMA. In most cases, the resulting compounds showed minimal to no activity (MICs ≥ 57.3 μM) in all three media. During the in vitro studies, the compounds showed significant precipitation in the media over time suggesting poor aqueous solubility. The SwissADME analysis of these compounds indicated poor solubility in aqueous media, which is likely linked to their molecular size and complexity. Despite poor aqueous solubility, compounds 3.8a-f showed acceptable physicochemical properties and ADME parameters. No PAINs (Pan-assay interference compounds) were observed. Minimal to no interaction with CYP enzymes were predicted. Most of the compounds were compatible with the Lipinski’s rules of five. , Thesis (MSc) -- Faculty of Science, Pharmacy, 2023
- Full Text:
- Authors: Rukweza, Kudakwashe Gerald
- Date: 2023-10-13
- Subjects: Quinolone antibacterial agents , Mycobacterium tuberculosis , Antitubercular agents , Tuberculosis Chemotherapy , Drug resistance , Moxifloxacin , Isoniazid
- Language: English
- Type: Academic theses , Master's theses , text
- Identifier: http://hdl.handle.net/10962/390901 , vital:68596
- Description: Tuberculosis is one of the leading causes of death worldwide caused by an infectious species, Mycobacterium tuberculosis (Mtb). Some of the factors that contribute to the prevalence of this disease include the complexity of diagnosis, prolonged period of therapy, side effects associated with current TB drugs, the prevalence of resistance against the current treatment options and a high incidence of co-infection with HIV/AIDS. Thus, there is a need for new alternative drugs to provide safer and shorter treatment therapy options that are not susceptible to the development of drug resistance. In this project, we focus our attention on the quinolone pharmacophore. Quinolones are currently used as alternative options in the treatment of resistant strains of Mtb. Previous work pertaining to quinolone-isoniazid hybrid compounds showed promising in vitro activity against the H37Rv strain of Mtb and served as the inspiration to pursue this project. The journey commenced with the synthesis of quinolone-pyrazinamide hybrid compounds (Figure 3.1). These compounds were synthesised, through the attachment of the quinolone and the pyrazinamide entity through a hydrazine linker. The synthesised compounds were purified, and their structural identity confirmed using common spectroscopic techniques including 1H and 13C NMR, infra-red (IR) and mass spectrometry. In vitro biological assays were performed by testing for the activity against the H37RvMA strain of Mtb. The bioassays were performed in triplicates to ensure the accuracy of the results. Moxifloxacin and isoniazid were tested as control compounds. Finally, the resultant compounds were profiled in silico for physicochemical and ADMET properties using open access software SwissADME. All the synthesised compounds 3.8a-f showed no activity against H37RvMA. In most cases, the resulting compounds showed minimal to no activity (MICs ≥ 57.3 μM) in all three media. During the in vitro studies, the compounds showed significant precipitation in the media over time suggesting poor aqueous solubility. The SwissADME analysis of these compounds indicated poor solubility in aqueous media, which is likely linked to their molecular size and complexity. Despite poor aqueous solubility, compounds 3.8a-f showed acceptable physicochemical properties and ADME parameters. No PAINs (Pan-assay interference compounds) were observed. Minimal to no interaction with CYP enzymes were predicted. Most of the compounds were compatible with the Lipinski’s rules of five. , Thesis (MSc) -- Faculty of Science, Pharmacy, 2023
- Full Text:
Synthesis, characterisation and evaluation of benzoxaborole-based hybrids as antiplasmodial agents
- Authors: Gumbo, Maureen
- Date: 2017
- Subjects: Malaria Chemotherapy , Antimalarials , Boron compounds , Drug resistance , Plasmodium falciparum , Drug development
- Language: English
- Type: Master's theses , text
- Identifier: http://hdl.handle.net/10962/59193 , vital:27456
- Description: Malaria is a mosquito-borne disease, which continues to pose a threat to the entire humanity. About 40% of the world population is estimated to be at risk of infections by malaria. Despite efforts undertaken by scientific community, government entities and international organizations, malaria is still rampant. The major problem is drug resistance, where the Plasmodium spp have over the past decades developed drug resistance against available drugs. In order to counter this problem, novel antimalarial drugs that are efficacious and with novel mode of action are of great necessity. Benzoxaborole derivatives have been shown to exhibit promising antimalarial activity against Plasmodium falciparum strains. Previous studies reported on the compounds such as 6-(2- (alkoxycarbonyl)pyrazinyl-5-oxy)-1,3-dihydro-1-hydroxy-2,1-benzoxaboroles, which showed good antimalarial activity against both W7 and 3D7 strains without significant toxicity. On the other hand, chloroquine (CQ) and cinnamic acids have a wide variety of biological activity including antimalarial activity. Herein, a hybridisation strategy was employed to synthesise new CQ-benzoxaborole and cinnamoyl-benzoxaborole hybrids. CQ-Benzoxaborole 2.12a-c and cinnamoylbenzoxaborole 2.11a-g hydrid molecules were synthesised in low to good yields. Their structural identities were confirmed using conventional spectroscopic techniques (1H and 13C NMR, and mass spectrometry). CQ-benzoxaborole compounds, however, showed instability, and only 2.12b was used for in vitro biological assay and showed activity comparable to CQ. Furthermore, in vitro biological assay revealed that compounds 2.11a-g poorly inhibited the growth of P. falciparum parasites. Interestingly, these compounds, however, exhibited satisfactory activity against Trypanosoma brucei with IC50 = 0.052 μM for compound 2.11g. The cell cytotoxicity assay of all final compounds confirmed that all CQ-benzoxaborole 2.12b and cinnamoyl-benzoxaborole 2.11a-g hybrids were non-toxic against HeLa cell lines. However, efforts to further expand the structure-activity relationship (SAR) of CQbenzoxaborole by increasing the length of the linker with one extra carbon (Scheme 2.10) were not possible as an important precursor 6-formylbenzoxaborole 2.29 could not be synthesized in sufficient yields. , Thesis (MSc) -- Faculty of Faculty of Science, Chemistry, 2017
- Full Text:
- Authors: Gumbo, Maureen
- Date: 2017
- Subjects: Malaria Chemotherapy , Antimalarials , Boron compounds , Drug resistance , Plasmodium falciparum , Drug development
- Language: English
- Type: Master's theses , text
- Identifier: http://hdl.handle.net/10962/59193 , vital:27456
- Description: Malaria is a mosquito-borne disease, which continues to pose a threat to the entire humanity. About 40% of the world population is estimated to be at risk of infections by malaria. Despite efforts undertaken by scientific community, government entities and international organizations, malaria is still rampant. The major problem is drug resistance, where the Plasmodium spp have over the past decades developed drug resistance against available drugs. In order to counter this problem, novel antimalarial drugs that are efficacious and with novel mode of action are of great necessity. Benzoxaborole derivatives have been shown to exhibit promising antimalarial activity against Plasmodium falciparum strains. Previous studies reported on the compounds such as 6-(2- (alkoxycarbonyl)pyrazinyl-5-oxy)-1,3-dihydro-1-hydroxy-2,1-benzoxaboroles, which showed good antimalarial activity against both W7 and 3D7 strains without significant toxicity. On the other hand, chloroquine (CQ) and cinnamic acids have a wide variety of biological activity including antimalarial activity. Herein, a hybridisation strategy was employed to synthesise new CQ-benzoxaborole and cinnamoyl-benzoxaborole hybrids. CQ-Benzoxaborole 2.12a-c and cinnamoylbenzoxaborole 2.11a-g hydrid molecules were synthesised in low to good yields. Their structural identities were confirmed using conventional spectroscopic techniques (1H and 13C NMR, and mass spectrometry). CQ-benzoxaborole compounds, however, showed instability, and only 2.12b was used for in vitro biological assay and showed activity comparable to CQ. Furthermore, in vitro biological assay revealed that compounds 2.11a-g poorly inhibited the growth of P. falciparum parasites. Interestingly, these compounds, however, exhibited satisfactory activity against Trypanosoma brucei with IC50 = 0.052 μM for compound 2.11g. The cell cytotoxicity assay of all final compounds confirmed that all CQ-benzoxaborole 2.12b and cinnamoyl-benzoxaborole 2.11a-g hybrids were non-toxic against HeLa cell lines. However, efforts to further expand the structure-activity relationship (SAR) of CQbenzoxaborole by increasing the length of the linker with one extra carbon (Scheme 2.10) were not possible as an important precursor 6-formylbenzoxaborole 2.29 could not be synthesized in sufficient yields. , Thesis (MSc) -- Faculty of Faculty of Science, Chemistry, 2017
- Full Text:
- «
- ‹
- 1
- ›
- »