Design, synthesis, characterization and evaluation of Chitosan-based hydrogel for controlled drug delivery system
- Authors: Safari, Justin Bazibuhe
- Date: 2022-04
- Subjects: Chitosan , Drug delivery systems , Drugs Controlled release , Tenofovir , Colloids , Hepatitis B Chemotherapy , Hydrogel
- Language: English
- Type: Master's theses , text
- Identifier: http://hdl.handle.net/10962/232182 , vital:49969
- Description: Hepatitis B infection is a deadly infectious disease caused by the hepatitis B virus and is responsible for many deaths every year worldwide. Despite medication and vaccines against hepatitis B infection, it still presents high morbidity and mortality among populations. This is partly due to factors such as a long medication period of the existing treatments, resulting in poor patient compliance and leading to treatment failure. In addition, this situation can be responsible for the observed emerging drug resistance. Hence, novel drugs and drug delivery systems are needed to tackle this matter. Many strategies have been used to develop long-acting drug delivery systems treatment for several infectious diseases. Hydrogel drug delivery systems have shown interesting results as controlled drug delivery systems for several drugs. Therefore, the present study aimed to develop chitosan grafted poly (acrylamide-co-acrylic acid) hydrogel and apply it as a pH-sensitive controlled delivery system of tenofovir disoproxil fumarate (TDF). TDF is a nucleoside reverse transcriptase inhibitor used as first-line treatment of hepatitis B chronic infection and in the treatment of other viral infections. The free-radical polymerization method was utilized to modify chitosan by grafting acrylamide and acrylic acid and using N, N’-methylene bisacrylamide as the crosslinking agent to prepare the hydrogel, followed by an optimization of parameters that could affect the swelling capacity. The prepared chitosan-g-poly(acrylamide-co-acrylic acid) hydrogel was characterized using Fourier Transmission Infra-red spectroscopy (FTIR), X-Ray Diffraction (XRD), Thermal Gravimetric Analysis (TGA), Differential Scanning Calorimetry (DSC), Energy-dispersive X-ray spectroscopy (EDS), Scanning Electron Microscopy (SEM), and was evaluated for cytotoxicity using a HeLa cell assay. TDF was used as a drug model, it was loaded by the swelling equilibrium method, following by the investigation of the release profile of TDF-loaded hydrogel at pH 1.2 and 7.4. A successful synthesis of chitosan grafted poly(acrylamide-co-acrylic acid) hydrogel was confirmed by Fourier Transmission Infra-red spectroscopy (FTIR), X-Ray Diffraction Spectroscopy (XRD), Thermal Gravimetric Analysis (TGA), Differential Scanning Calorimetry (DSC), Energy-dispersive X-ray spectroscopy (EDS) and Scanning Electron Microscopy (SEM). Optimization results showed that the ratio of monomers impacted the swelling ratio of the hydrogel and both the concentration of the crosslinking agent, and the reaction initiator also affected the swelling ratio. The synthesized hydrogels were sensitive to pH and ionic strength. Hydrogel swelling was lower in acidic solutions and higher in neutral and basic solutions and decreased with the increasing ionic strength. Furthermore, SEM results revealed that hydrogel have a rough and fibrous surface structure with numerous pores. Cytotoxicity studies demonstrated that the hydrogel was non-cytotoxic at 50 μg/ml against HeLa cells which suggested a good biocompatibility of the material. TDF was loaded and released from the hydrogels and showed an encapsulation efficiency and drug loading percentage ranging from 81-96% and 8-10%, respectively. TDF release profile was found to be low in buffer solution of pH 1.2 (in the range of 5-10%) and much higher (38-53%) at pH 7.4 within 96 hours. TDF maintained its chemical integrity after release and the hydrogels can therefore be proposed as a new controlled-release drug delivery system for hepatitis B treatment. , Thesis (MSc) -- Faculty of Science, Chemistry, 2022
- Full Text:
- Date Issued: 2022-04
- Authors: Safari, Justin Bazibuhe
- Date: 2022-04
- Subjects: Chitosan , Drug delivery systems , Drugs Controlled release , Tenofovir , Colloids , Hepatitis B Chemotherapy , Hydrogel
- Language: English
- Type: Master's theses , text
- Identifier: http://hdl.handle.net/10962/232182 , vital:49969
- Description: Hepatitis B infection is a deadly infectious disease caused by the hepatitis B virus and is responsible for many deaths every year worldwide. Despite medication and vaccines against hepatitis B infection, it still presents high morbidity and mortality among populations. This is partly due to factors such as a long medication period of the existing treatments, resulting in poor patient compliance and leading to treatment failure. In addition, this situation can be responsible for the observed emerging drug resistance. Hence, novel drugs and drug delivery systems are needed to tackle this matter. Many strategies have been used to develop long-acting drug delivery systems treatment for several infectious diseases. Hydrogel drug delivery systems have shown interesting results as controlled drug delivery systems for several drugs. Therefore, the present study aimed to develop chitosan grafted poly (acrylamide-co-acrylic acid) hydrogel and apply it as a pH-sensitive controlled delivery system of tenofovir disoproxil fumarate (TDF). TDF is a nucleoside reverse transcriptase inhibitor used as first-line treatment of hepatitis B chronic infection and in the treatment of other viral infections. The free-radical polymerization method was utilized to modify chitosan by grafting acrylamide and acrylic acid and using N, N’-methylene bisacrylamide as the crosslinking agent to prepare the hydrogel, followed by an optimization of parameters that could affect the swelling capacity. The prepared chitosan-g-poly(acrylamide-co-acrylic acid) hydrogel was characterized using Fourier Transmission Infra-red spectroscopy (FTIR), X-Ray Diffraction (XRD), Thermal Gravimetric Analysis (TGA), Differential Scanning Calorimetry (DSC), Energy-dispersive X-ray spectroscopy (EDS), Scanning Electron Microscopy (SEM), and was evaluated for cytotoxicity using a HeLa cell assay. TDF was used as a drug model, it was loaded by the swelling equilibrium method, following by the investigation of the release profile of TDF-loaded hydrogel at pH 1.2 and 7.4. A successful synthesis of chitosan grafted poly(acrylamide-co-acrylic acid) hydrogel was confirmed by Fourier Transmission Infra-red spectroscopy (FTIR), X-Ray Diffraction Spectroscopy (XRD), Thermal Gravimetric Analysis (TGA), Differential Scanning Calorimetry (DSC), Energy-dispersive X-ray spectroscopy (EDS) and Scanning Electron Microscopy (SEM). Optimization results showed that the ratio of monomers impacted the swelling ratio of the hydrogel and both the concentration of the crosslinking agent, and the reaction initiator also affected the swelling ratio. The synthesized hydrogels were sensitive to pH and ionic strength. Hydrogel swelling was lower in acidic solutions and higher in neutral and basic solutions and decreased with the increasing ionic strength. Furthermore, SEM results revealed that hydrogel have a rough and fibrous surface structure with numerous pores. Cytotoxicity studies demonstrated that the hydrogel was non-cytotoxic at 50 μg/ml against HeLa cells which suggested a good biocompatibility of the material. TDF was loaded and released from the hydrogels and showed an encapsulation efficiency and drug loading percentage ranging from 81-96% and 8-10%, respectively. TDF release profile was found to be low in buffer solution of pH 1.2 (in the range of 5-10%) and much higher (38-53%) at pH 7.4 within 96 hours. TDF maintained its chemical integrity after release and the hydrogels can therefore be proposed as a new controlled-release drug delivery system for hepatitis B treatment. , Thesis (MSc) -- Faculty of Science, Chemistry, 2022
- Full Text:
- Date Issued: 2022-04
Design, formulation and evalauation of liposomes co-loaded with human serum Albumin and Rifampicin
- Authors: Bapolisi, Alain Murhimalika
- Date: 2020
- Subjects: Liposomes , Serum albumin , Rifampin , Mycobacterium tuberculosis
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/161780 , vital:40670
- Description: Tuberculosis (TB) is a devastating infectious disease caused by Mycobacterium tuberculosis and is the leading cause of death from a single infectious agent. The high morbidity and mortality rates of TB are partly due to factors such as the lengthy regimen (of 6–24 months), the development of drug resistance, and the pathogen location within the macrophages. These, with poor physiochemical properties of existing drugs hamper the effectiveness of the treatment despite the existence of potent antibiotics such as Rifampicin (Rif). Hydrophobicity plagues many drugs, including Rif, which are then particularly affected due to inherently poor intracellular availability. Novel drug delivery approaches are therefore needed in order to optimize the cytotoxic potential of said antitubercular drugs. To improve the bioavailability of hydrophobic drugs, numerous delivery strategies have been developed. Amongst these, the coordination of cytotoxic drugs to therapeutic proteins have shown some success for improved efficacy in the management of illnesses including infectious diseases. Of therapeutic proteins, Human Serum Albumin (HSA) is an attractive drug carrier with interestingbenefits such as low immunogenicity, antioxidant properties and improving cellular uptake ofdrugs through HSA-specific binding sites which are expressed on most cells including macrophages, where M. tuberculosis often resides. Hence, combination of Rif to HSA (Rif-HSA)seems a promising approach for improved intracellular delivery of Rif. However, the in vivo stability of colloidal protein-based therapeutics is mostly challenging and an effective vehicle is needed to control the biological fate of such conjugates.Liposomes seem to be appropriate carriers for the Rif-HSA complex due to their reputable applicability for encapsulating diverse materials (i.e., hydrophobic and hydrophilic compounds or small and complex molecules) and preventing chemical and biological degradation of the cargo. Therefore, the main objective of this study was to simultaneously encapsulate Rif and HSA in liposomes, which, to the best of our knowledge, has not been done before. The dual liposomes (Rif-HSA-lip) were made by a modified “Reverse Phase Evaporation” method (REV), following a Design of Experiments (DOE) approach to determine which factors impact the formulation. In addition, liposomes were made from crude soybean lecithin (CSL), rather than expensive and highly purified lipids. The liposomes were fully characterised, and the encapsulation efficiency (î) was monitored using high-performance liquid chromatography (HPLC). The results were correlated with factors such as organic and aqueous phase composition, as well as the in vitro release profile of Rif. Transmission electron microscopy (TEM) results confirmed the formation of spherical dual liposomes nanoparticles of roughly 200 nm. Dynamic light scattering (DLS) and Zeta potential measurements showed a negative charge (<–45 mV) and with satisfactory polydispersity (PDI<0.5). HSA dramatically improved the aqueous solubility of Rif (from1.9 mg/ml in water to around 4.3 mg/ml in HSA 10% solution) mainly due to Rif-HSA hydrophobic interactions. This resulted in a good î of almost 60% for Rif, despite the presence of bulky HSA in the lipid bilayer. These details were confirmed using proton nuclear magnetic resonance (1H NMR) and Fourier-transform infrared spectroscopy (FTIR). Furthermore, energy dispersive X-ray (EDX) and DLS data suggested the presence of HSA poking out on the surface of liposomes, which is encouraging for potential targeted delivery in the future. The in vitro release studies also depicted a substantial improvement in the diffusion of Rif in dual liposomes versus free Rif, from 65% after 12 hours for free Rif to 95% after only 5 hours for Rif- HSA-lip. Finally, stability studies conducted over 30 days at room temperature, showed that the freeze-dried formulations of Rif-HSA-lip exhibited good shelf stability over liposomes with no HSA. This study represents an illustrative example of co-loading of antibiotics and proteins into liposomes, which could encourage further development of novel nanoparticulate tools for the effective management of both drug-susceptible and -resistant infectious diseases such as TB.
- Full Text:
- Date Issued: 2020
- Authors: Bapolisi, Alain Murhimalika
- Date: 2020
- Subjects: Liposomes , Serum albumin , Rifampin , Mycobacterium tuberculosis
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/161780 , vital:40670
- Description: Tuberculosis (TB) is a devastating infectious disease caused by Mycobacterium tuberculosis and is the leading cause of death from a single infectious agent. The high morbidity and mortality rates of TB are partly due to factors such as the lengthy regimen (of 6–24 months), the development of drug resistance, and the pathogen location within the macrophages. These, with poor physiochemical properties of existing drugs hamper the effectiveness of the treatment despite the existence of potent antibiotics such as Rifampicin (Rif). Hydrophobicity plagues many drugs, including Rif, which are then particularly affected due to inherently poor intracellular availability. Novel drug delivery approaches are therefore needed in order to optimize the cytotoxic potential of said antitubercular drugs. To improve the bioavailability of hydrophobic drugs, numerous delivery strategies have been developed. Amongst these, the coordination of cytotoxic drugs to therapeutic proteins have shown some success for improved efficacy in the management of illnesses including infectious diseases. Of therapeutic proteins, Human Serum Albumin (HSA) is an attractive drug carrier with interestingbenefits such as low immunogenicity, antioxidant properties and improving cellular uptake ofdrugs through HSA-specific binding sites which are expressed on most cells including macrophages, where M. tuberculosis often resides. Hence, combination of Rif to HSA (Rif-HSA)seems a promising approach for improved intracellular delivery of Rif. However, the in vivo stability of colloidal protein-based therapeutics is mostly challenging and an effective vehicle is needed to control the biological fate of such conjugates.Liposomes seem to be appropriate carriers for the Rif-HSA complex due to their reputable applicability for encapsulating diverse materials (i.e., hydrophobic and hydrophilic compounds or small and complex molecules) and preventing chemical and biological degradation of the cargo. Therefore, the main objective of this study was to simultaneously encapsulate Rif and HSA in liposomes, which, to the best of our knowledge, has not been done before. The dual liposomes (Rif-HSA-lip) were made by a modified “Reverse Phase Evaporation” method (REV), following a Design of Experiments (DOE) approach to determine which factors impact the formulation. In addition, liposomes were made from crude soybean lecithin (CSL), rather than expensive and highly purified lipids. The liposomes were fully characterised, and the encapsulation efficiency (î) was monitored using high-performance liquid chromatography (HPLC). The results were correlated with factors such as organic and aqueous phase composition, as well as the in vitro release profile of Rif. Transmission electron microscopy (TEM) results confirmed the formation of spherical dual liposomes nanoparticles of roughly 200 nm. Dynamic light scattering (DLS) and Zeta potential measurements showed a negative charge (<–45 mV) and with satisfactory polydispersity (PDI<0.5). HSA dramatically improved the aqueous solubility of Rif (from1.9 mg/ml in water to around 4.3 mg/ml in HSA 10% solution) mainly due to Rif-HSA hydrophobic interactions. This resulted in a good î of almost 60% for Rif, despite the presence of bulky HSA in the lipid bilayer. These details were confirmed using proton nuclear magnetic resonance (1H NMR) and Fourier-transform infrared spectroscopy (FTIR). Furthermore, energy dispersive X-ray (EDX) and DLS data suggested the presence of HSA poking out on the surface of liposomes, which is encouraging for potential targeted delivery in the future. The in vitro release studies also depicted a substantial improvement in the diffusion of Rif in dual liposomes versus free Rif, from 65% after 12 hours for free Rif to 95% after only 5 hours for Rif- HSA-lip. Finally, stability studies conducted over 30 days at room temperature, showed that the freeze-dried formulations of Rif-HSA-lip exhibited good shelf stability over liposomes with no HSA. This study represents an illustrative example of co-loading of antibiotics and proteins into liposomes, which could encourage further development of novel nanoparticulate tools for the effective management of both drug-susceptible and -resistant infectious diseases such as TB.
- Full Text:
- Date Issued: 2020
- «
- ‹
- 1
- ›
- »