Insights: elucidation of squalene monooxygenase inhibitors for lowering cholesterol in cardiovascular diseases
- Authors: Leoma, Mofeli Benedict
- Date: 2024-04-04
- Subjects: Squalene monooxygenase , Cholesterol , Cardiovascular system Diseases , Anticholesteremic agents , Molecular dynamics , High throughput screening (Drug development) , Molecular Docking
- Language: English
- Type: Academic theses , Master's theses , text
- Identifier: http://hdl.handle.net/10962/434861 , vital:73111
- Description: Statins have been used to lower high cholesterol levels in the past few decades. However, several studies have shown that some people taking statins experience side effects over time, especially elderly patients, women of childbirth possibility, and children. Several studies have shown that the majority of people with underlying cardiovascular complications caused by high cholesterol are at a greater risk of fatality due to COVID-19, regardless of age and sex. The literature suggests that antimycotic squalene monooxygenase inhibitors, terbinafine and its derivatives, and anticholesterolemic squalene monooxygenase (SM) inhibitors could be another option and a safer remedy for lowering cholesterol in mammals. Molecular docking calculations, molecular dynamics (MD) simulations, molecular mechanics generalized born surface area (MM-GBSA) calculations, quantum mechanics/molecular mechanics calculations (QM/MM), and density functional theory (DFT) calculations were used in this study. An early stage in drug discovery, in which small molecular hits from high- throughput screening (HTS) are evaluated and undergo limited optimization to identify promising lead compounds, is referred to as lead generation. To address the first step of lead generation, the number of compounds to be tested was narrowed down, and the hit compounds that could be taken for further tests were obtained. Thus, the molecular docking technique was taken advantage of, which assisted us in identifying the antimycotic ligand SDZ 18, which had a good binding affinity of about -8,4 kcal mol−1. Another widely employed strategy, the molecular mechanics-generalized born surface area (MM-GBSA), was used to investigate the binding free energies of the protein-ligand complexes to validate the binding affinities obtained from molecular docking. Despite the excellent docking results, it must be emphasized that the stability of the ligand in the binding pocket must be investigated. To address this, the protein-ligand complexes were then taken through molecular dynamics for 100 ns simulations calculations which showed that the inhibitors stayed in the binding pocket with the RMSD values below 3.5 Å for most systems. This provided insight into a realistic model because the docked complexes were placed in conditions closer to the physiological environment at 300 K and 1.01325 bar, and in an explicitly solvated dynamic environment. Density functional theory (DFT) at the B3LPY level of theory using the standard 6-31G(d,p) basis set was used to assess the reactivity and other properties of the SM inhibitors. ONIOM calculations were performed to explain what was happening at the microscopic level by calculating the total energy of the complex. The aim of this project was to efficiently uncover the non-physical aspects of SM inhibitors with the help of computational techniques to identify new drugs that can lower high cholesterol levels. From a theoretical perspective, the results obtained from docking indicated that the antimycotic ligands SDZ SBA 586 18 and TNSA 84 (trisnor-squalene alcohol ) have good binding affinities, and the MM-GBSA method provided free energy calculations. MD results indicated that the stability of the ligand in the binding pocket was achieved during the 100 ns simulations. The HOMO-LUMO energy gaps obtained from DFT calculations provided information on the reactivity of the ligands. Other insights into the protein-ligand complexes were obtained from a hybrid ONIOM QM/MM study. , Thesis (MSc) -- Faculty of Science, Chemistry, 2024
- Full Text:
- Date Issued: 2024-04-04
- Authors: Leoma, Mofeli Benedict
- Date: 2024-04-04
- Subjects: Squalene monooxygenase , Cholesterol , Cardiovascular system Diseases , Anticholesteremic agents , Molecular dynamics , High throughput screening (Drug development) , Molecular Docking
- Language: English
- Type: Academic theses , Master's theses , text
- Identifier: http://hdl.handle.net/10962/434861 , vital:73111
- Description: Statins have been used to lower high cholesterol levels in the past few decades. However, several studies have shown that some people taking statins experience side effects over time, especially elderly patients, women of childbirth possibility, and children. Several studies have shown that the majority of people with underlying cardiovascular complications caused by high cholesterol are at a greater risk of fatality due to COVID-19, regardless of age and sex. The literature suggests that antimycotic squalene monooxygenase inhibitors, terbinafine and its derivatives, and anticholesterolemic squalene monooxygenase (SM) inhibitors could be another option and a safer remedy for lowering cholesterol in mammals. Molecular docking calculations, molecular dynamics (MD) simulations, molecular mechanics generalized born surface area (MM-GBSA) calculations, quantum mechanics/molecular mechanics calculations (QM/MM), and density functional theory (DFT) calculations were used in this study. An early stage in drug discovery, in which small molecular hits from high- throughput screening (HTS) are evaluated and undergo limited optimization to identify promising lead compounds, is referred to as lead generation. To address the first step of lead generation, the number of compounds to be tested was narrowed down, and the hit compounds that could be taken for further tests were obtained. Thus, the molecular docking technique was taken advantage of, which assisted us in identifying the antimycotic ligand SDZ 18, which had a good binding affinity of about -8,4 kcal mol−1. Another widely employed strategy, the molecular mechanics-generalized born surface area (MM-GBSA), was used to investigate the binding free energies of the protein-ligand complexes to validate the binding affinities obtained from molecular docking. Despite the excellent docking results, it must be emphasized that the stability of the ligand in the binding pocket must be investigated. To address this, the protein-ligand complexes were then taken through molecular dynamics for 100 ns simulations calculations which showed that the inhibitors stayed in the binding pocket with the RMSD values below 3.5 Å for most systems. This provided insight into a realistic model because the docked complexes were placed in conditions closer to the physiological environment at 300 K and 1.01325 bar, and in an explicitly solvated dynamic environment. Density functional theory (DFT) at the B3LPY level of theory using the standard 6-31G(d,p) basis set was used to assess the reactivity and other properties of the SM inhibitors. ONIOM calculations were performed to explain what was happening at the microscopic level by calculating the total energy of the complex. The aim of this project was to efficiently uncover the non-physical aspects of SM inhibitors with the help of computational techniques to identify new drugs that can lower high cholesterol levels. From a theoretical perspective, the results obtained from docking indicated that the antimycotic ligands SDZ SBA 586 18 and TNSA 84 (trisnor-squalene alcohol ) have good binding affinities, and the MM-GBSA method provided free energy calculations. MD results indicated that the stability of the ligand in the binding pocket was achieved during the 100 ns simulations. The HOMO-LUMO energy gaps obtained from DFT calculations provided information on the reactivity of the ligands. Other insights into the protein-ligand complexes were obtained from a hybrid ONIOM QM/MM study. , Thesis (MSc) -- Faculty of Science, Chemistry, 2024
- Full Text:
- Date Issued: 2024-04-04
Towards a possible future solution against Multidrug Resistance: An in silico exploration of the Multidrug and Toxic compound Extrusion (MATE) transporter proteins as potential antimicrobial drug targets
- Authors: Damji, Amira Mahamood
- Date: 2024-04-04
- Subjects: Multidrug resistance , Multidrug and toxic compound extrusion family, eukaryotic , Docking , Molecular dynamics , Drug development , Transmembrane protein
- Language: English
- Type: Academic theses , Master's theses , text
- Identifier: http://hdl.handle.net/10962/435009 , vital:73123
- Description: The rise of multidrug resistance (MDR) has become a pressing global issue, hindering the treatment of cancers and infectious diseases, and imposing a burden on healthcare systems and the economy. The Multidrug and Toxic compound Extrusion (MATE) superfamily of membrane efflux transporters is one of the key players contributing to MDR due to their ability to export a wide range of cationic and hydrophilic xenobiotics, including treatment drugs, from cells, diminishing their efficacy. Targeting MATE transporters holds great promise in achieving some cellular control over MDR, but first, a deeper understanding of their structure-function-dynamics link is required. This study aimed to explore the MATE transporters as potential antimicrobial drug targets using a two-fold in silico approach. First, virtual screening of compounds from the South African Natural Compounds Database (SANCDB) was performed to identify prospective lead inhibitory compounds against the MATE transporters using molecular docking, and top hits were selected based on their binding energy and interaction with the active site on the N-lobe of the protein. Second, to investigate the molecular-level dynamics of their extrusion mechanism, the MATE transporter structures were embedded in a POPC membrane bilayer using the CHARMM-GUI online tool and then subjected to MD simulations for 100 ns with the CHARMM 36m force field using GROMACS. The resulting trajectories were evaluated using three standard metrics – RMSD, RMSF, and Rg; significant global structural changes were observed and key functional regions in both membrane- and non-membrane transmembrane (TM) segments were identified, containing more dynamic and flexible residues than other regions. Furthermore, the MATE transporters showed more of a loosely-packed structure, providing flexibility to allow for conformational switching during their substrate-transport cycle, which is typical for proteins whose secondary structures are composed of all α-helices. The scope of this study lied in the preliminary stages of the computer-aided drug design process, and provided insights that can be used to guide the development of strategies aimed at regulating or inhibiting the function of the MATE transporters, offering a possible future solution to the growing challenge of MDR. , Thesis (MSc) -- Faculty of Science, Biochemistry and Microbiology, 2024
- Full Text:
- Date Issued: 2024-04-04
- Authors: Damji, Amira Mahamood
- Date: 2024-04-04
- Subjects: Multidrug resistance , Multidrug and toxic compound extrusion family, eukaryotic , Docking , Molecular dynamics , Drug development , Transmembrane protein
- Language: English
- Type: Academic theses , Master's theses , text
- Identifier: http://hdl.handle.net/10962/435009 , vital:73123
- Description: The rise of multidrug resistance (MDR) has become a pressing global issue, hindering the treatment of cancers and infectious diseases, and imposing a burden on healthcare systems and the economy. The Multidrug and Toxic compound Extrusion (MATE) superfamily of membrane efflux transporters is one of the key players contributing to MDR due to their ability to export a wide range of cationic and hydrophilic xenobiotics, including treatment drugs, from cells, diminishing their efficacy. Targeting MATE transporters holds great promise in achieving some cellular control over MDR, but first, a deeper understanding of their structure-function-dynamics link is required. This study aimed to explore the MATE transporters as potential antimicrobial drug targets using a two-fold in silico approach. First, virtual screening of compounds from the South African Natural Compounds Database (SANCDB) was performed to identify prospective lead inhibitory compounds against the MATE transporters using molecular docking, and top hits were selected based on their binding energy and interaction with the active site on the N-lobe of the protein. Second, to investigate the molecular-level dynamics of their extrusion mechanism, the MATE transporter structures were embedded in a POPC membrane bilayer using the CHARMM-GUI online tool and then subjected to MD simulations for 100 ns with the CHARMM 36m force field using GROMACS. The resulting trajectories were evaluated using three standard metrics – RMSD, RMSF, and Rg; significant global structural changes were observed and key functional regions in both membrane- and non-membrane transmembrane (TM) segments were identified, containing more dynamic and flexible residues than other regions. Furthermore, the MATE transporters showed more of a loosely-packed structure, providing flexibility to allow for conformational switching during their substrate-transport cycle, which is typical for proteins whose secondary structures are composed of all α-helices. The scope of this study lied in the preliminary stages of the computer-aided drug design process, and provided insights that can be used to guide the development of strategies aimed at regulating or inhibiting the function of the MATE transporters, offering a possible future solution to the growing challenge of MDR. , Thesis (MSc) -- Faculty of Science, Biochemistry and Microbiology, 2024
- Full Text:
- Date Issued: 2024-04-04
An in-silico study of the type II NADH: Quinone Oxidoreductase (ndh2). A new anti-malaria drug target
- Authors: Baye, Bertha Cinthia
- Date: 2022-10-14
- Subjects: Malaria , Plasmodium , Molecular dynamics , Computer simulation , Quinone , Antimalarials , Molecules Models , Docking , Drugs Computer-aided design
- Language: English
- Type: Academic theses , Doctoral theses , text
- Identifier: http://hdl.handle.net/10962/365633 , vital:65767 , DOI https://doi.org/10.21504/10962/365633
- Description: Malaria is caused by Plasmodium parasites, spread to people through the bites of infected female Anopheles mosquitoes. This study focuses on all 5 (Plasmodium falciparum, Plasmodium knowlesi, Plasmodium malariae, Plasmodium ovale and Plasmodium vivax) parasites that cause malaria in humans. Africa is a developing continent, and it is the most affected with an estimation of 90% of more than 400 000 malaria-related deaths reported by the World Health Organization (WHO) report in 2020, in which 61% of that number are children under the ages of five. Malaria resistance was initially observed in early 1986 and with the progression of time anti-malarial drug resistance has only increased. As a result, there is a need to study the malarial proteins mechanism of action and identify alternative treatment strategies for this disease. Type II NADH: quinone oxidoreductase (NDH2) is a monotopic protein that catalyses the electron transfer from NADH to quinone via FAD without a proton-pumping activity, and functions as an initial enzyme, either in addition to or as an alternative to proton-pumping NADH dehydrogenase (complex I) in the respiratory chain of bacteria, archaea, and fungal and plant mitochondrial. The structures for the Plasmodium knowlesi, Plasmodium malariae, Plasmodium ovale and Plasmodium vivax were modelled from the crystal structure of Plasmodium falciparum (5JWA). Compounds from the South African natural compounds database (SANCDB) were docked against both the NDH2 crystal structure and modelled structures. By performing in silico screening the study aimed to find potential compounds that might interrupt the electron transfer to quinone therefore disturbing the enzyme‟s function and thereby possibly eliminating the plasmodium parasite. CHARMM-GUI was used to create the membrane (since this work is with membrane-bound proteins) and to orient the protein on the membrane using OPM server guidelines, the interface produced GROMACS topology files that were used in molecular dynamics simulations. Molecular dynamics simulations were performed in the Centre for high performance computing (CHPC) cluster under the CHEM0802 project and the trajectories produced were further analysed. In this work not only were hit compounds from SANCDB identified, but also differences in behaviour across species and in the presence or absence of the membrane were described. This highlights the need to include the correct protein environment when studying these systems. , Thesis (PhD) -- Faculty of Science, Biochemistry and Microbiology, 2022
- Full Text:
- Date Issued: 2022-10-14
- Authors: Baye, Bertha Cinthia
- Date: 2022-10-14
- Subjects: Malaria , Plasmodium , Molecular dynamics , Computer simulation , Quinone , Antimalarials , Molecules Models , Docking , Drugs Computer-aided design
- Language: English
- Type: Academic theses , Doctoral theses , text
- Identifier: http://hdl.handle.net/10962/365633 , vital:65767 , DOI https://doi.org/10.21504/10962/365633
- Description: Malaria is caused by Plasmodium parasites, spread to people through the bites of infected female Anopheles mosquitoes. This study focuses on all 5 (Plasmodium falciparum, Plasmodium knowlesi, Plasmodium malariae, Plasmodium ovale and Plasmodium vivax) parasites that cause malaria in humans. Africa is a developing continent, and it is the most affected with an estimation of 90% of more than 400 000 malaria-related deaths reported by the World Health Organization (WHO) report in 2020, in which 61% of that number are children under the ages of five. Malaria resistance was initially observed in early 1986 and with the progression of time anti-malarial drug resistance has only increased. As a result, there is a need to study the malarial proteins mechanism of action and identify alternative treatment strategies for this disease. Type II NADH: quinone oxidoreductase (NDH2) is a monotopic protein that catalyses the electron transfer from NADH to quinone via FAD without a proton-pumping activity, and functions as an initial enzyme, either in addition to or as an alternative to proton-pumping NADH dehydrogenase (complex I) in the respiratory chain of bacteria, archaea, and fungal and plant mitochondrial. The structures for the Plasmodium knowlesi, Plasmodium malariae, Plasmodium ovale and Plasmodium vivax were modelled from the crystal structure of Plasmodium falciparum (5JWA). Compounds from the South African natural compounds database (SANCDB) were docked against both the NDH2 crystal structure and modelled structures. By performing in silico screening the study aimed to find potential compounds that might interrupt the electron transfer to quinone therefore disturbing the enzyme‟s function and thereby possibly eliminating the plasmodium parasite. CHARMM-GUI was used to create the membrane (since this work is with membrane-bound proteins) and to orient the protein on the membrane using OPM server guidelines, the interface produced GROMACS topology files that were used in molecular dynamics simulations. Molecular dynamics simulations were performed in the Centre for high performance computing (CHPC) cluster under the CHEM0802 project and the trajectories produced were further analysed. In this work not only were hit compounds from SANCDB identified, but also differences in behaviour across species and in the presence or absence of the membrane were described. This highlights the need to include the correct protein environment when studying these systems. , Thesis (PhD) -- Faculty of Science, Biochemistry and Microbiology, 2022
- Full Text:
- Date Issued: 2022-10-14
Application of computer-aided drug design for identification of P. falciparum inhibitors
- Authors: Diallo, Bakary N’tji
- Date: 2021-10-29
- Subjects: Plasmodium falciparum , Malaria -- Chemotherapy , Molecular dynamics , Antimalarials , Cheminformatics , Drug development , Ligand binding (Biochemistry) , Plasmodium falciparum1-deoxy-D-xylulose-5-phosphate reductoisomerase (PfDXR) , South African Natural Compounds Database
- Language: English
- Type: Doctoral theses , text
- Identifier: http://hdl.handle.net/10962/192798 , vital:45265 , 10.21504/10962/192798
- Description: Malaria is a millennia-old disease with the first recorded cases dating back to 2700 BC found in Chinese medical records, and later in other civilizations. It has claimed human lives to such an extent that there are a notable associated socio-economic consequences. Currently, according to the World Health Organization (WHO), Africa holds the highest disease burden with 94% of deaths and 82% of cases with P. falciparum having ~100% prevalence. Chemotherapy, such as artemisinin combination therapy, has been and continues to be the work horse in the fight against the disease, together with seasonal malaria chemoprevention and the use of insecticides. Natural products such as quinine and artemisinin are particularly important in terms of their antimalarial activity. The emphasis in current chemotherapy research is the need for time and cost-effective workflows focussed on new mechanisms of action (MoAs) covering the target candidate profiles (TCPs). Despite a decline in cases over the past decades with, countries increasingly becoming certified malaria free, a stalling trend has been observed in the past five years resulting in missing the 2020 Global Technical Strategy (GTS) milestones. With no effective vaccine, a reduction in funding, slower drug approval than resistance emergence from resistant and invasive vectors, and threats in diagnosis with the pfhrp2/3 gene deletion, malaria remains a major health concern. Motivated by these reasons, the primary aim of this work was a contribution to the antimalarial pipeline through in silico approaches focusing on P. falciparum. We first intended an exploration of malarial targets through a proteome scale screening on 36 targets using multiple metrics to account for the multi-objective nature of drug discovery. The continuous growth of structural data offers the ideal scenario for mining new MoAs covering antimalarials TCPs. This was combined with a repurposing strategy using a set of orally available FDA approved drugs. Further, use was made of time- and cost-effective strategies combining QVina-W efficiency metrics that integrate molecular properties, GRIM rescoring for molecular interactions and a hydrogen mass repartitioning (HMR) molecular dynamics (MD) scheme for accelerated development of antimalarials in the context of resistance. This pipeline further integrates a complex ranking for better drug-target selectivity, and normalization strategies to overcome docking scoring function bias. The different metrics, ranking, normalization strategies and their combinations were first assessed using their mean ranking error (MRE). A version combining all metrics was used to select 36 unique protein-ligand complexes, assessed in MD, with the final retention of 25. From the 16 in vitro tested hits of the 25, fingolimod, abiraterone, prazosin, and terazosin showed antiplasmodial activity with IC50 2.21, 3.37, 16.67 and 34.72 μM respectively and of these, only fingolimod was found to be not safe with respect to human cell viability. These compounds were predicted active on different molecular targets, abiraterone was predicted to interact with a putative liver-stage essential target, hence promising as a transmission-blocking agent. The pipeline had a promising 25% hit rate considering the proteome-scale and use of cost-effective approaches. Secondly, we focused on Plasmodium falciparum 1-deoxy-D-xylulose-5-phosphate reductoisomerase (PfDXR) using a more extensive screening pipeline to overcome some of the current in silico screening limitations. Starting from the ZINC lead-like library of ~3M, hierarchical ligand-based virtual screening (LBVS) and structure-based virtual screening (SBVS) approaches with molecular docking and re-scoring using eleven scoring functions (SFs) were used. Later ranking with an exponential consensus strategy was included. Selected hits were further assessed through Molecular Mechanics Poisson-Boltzmann Surface Area (MM-PBSA), advanced MD sampling in a ligand pulling simulations and (Weighted Histogram Analysis Method) WHAM analysis for umbrella sampling (US) to derive binding free energies. Four leads had better predicted affinities in US than LC5, a 280 nM potent PfDXR inhibitor with ZINC000050633276 showing a promising binding of -20.43 kcal/mol. As shown with fosmidomycin, DXR inhibition offers fast acting compounds fulfilling antimalarials TCP1. Yet, fosmidomycin has a high polarity causing its short half-life and hampering its clinical use. These leads scaffolds are different from fosmidomycin and hence may offer better pharmacokinetic and pharmacodynamic properties and may also be promising for lead optimization. A combined analysis of residues’ contributions to the free energy of binding in MM-PBSA and to steered molecular dynamics (SMD) Fmax indicated GLU233, CYS268, SER270, TRP296, and HIS341 as exploitable for compound optimization. Finally, we updated the SANCDB library with new NPs and their commercially available analogs as a solution to NP availability. The library is extended to 1005 compounds from its initial 600 compounds and the database is integrated to Mcule and Molport APIs for analogs automatic update. The new set may contribute to virtual screening and to antimalarials as the most effective ones have NP origin. , Thesis (PhD) -- Faculty of Science, Biochemistry and Microbiology, 2021
- Full Text:
- Date Issued: 2021-10-29
- Authors: Diallo, Bakary N’tji
- Date: 2021-10-29
- Subjects: Plasmodium falciparum , Malaria -- Chemotherapy , Molecular dynamics , Antimalarials , Cheminformatics , Drug development , Ligand binding (Biochemistry) , Plasmodium falciparum1-deoxy-D-xylulose-5-phosphate reductoisomerase (PfDXR) , South African Natural Compounds Database
- Language: English
- Type: Doctoral theses , text
- Identifier: http://hdl.handle.net/10962/192798 , vital:45265 , 10.21504/10962/192798
- Description: Malaria is a millennia-old disease with the first recorded cases dating back to 2700 BC found in Chinese medical records, and later in other civilizations. It has claimed human lives to such an extent that there are a notable associated socio-economic consequences. Currently, according to the World Health Organization (WHO), Africa holds the highest disease burden with 94% of deaths and 82% of cases with P. falciparum having ~100% prevalence. Chemotherapy, such as artemisinin combination therapy, has been and continues to be the work horse in the fight against the disease, together with seasonal malaria chemoprevention and the use of insecticides. Natural products such as quinine and artemisinin are particularly important in terms of their antimalarial activity. The emphasis in current chemotherapy research is the need for time and cost-effective workflows focussed on new mechanisms of action (MoAs) covering the target candidate profiles (TCPs). Despite a decline in cases over the past decades with, countries increasingly becoming certified malaria free, a stalling trend has been observed in the past five years resulting in missing the 2020 Global Technical Strategy (GTS) milestones. With no effective vaccine, a reduction in funding, slower drug approval than resistance emergence from resistant and invasive vectors, and threats in diagnosis with the pfhrp2/3 gene deletion, malaria remains a major health concern. Motivated by these reasons, the primary aim of this work was a contribution to the antimalarial pipeline through in silico approaches focusing on P. falciparum. We first intended an exploration of malarial targets through a proteome scale screening on 36 targets using multiple metrics to account for the multi-objective nature of drug discovery. The continuous growth of structural data offers the ideal scenario for mining new MoAs covering antimalarials TCPs. This was combined with a repurposing strategy using a set of orally available FDA approved drugs. Further, use was made of time- and cost-effective strategies combining QVina-W efficiency metrics that integrate molecular properties, GRIM rescoring for molecular interactions and a hydrogen mass repartitioning (HMR) molecular dynamics (MD) scheme for accelerated development of antimalarials in the context of resistance. This pipeline further integrates a complex ranking for better drug-target selectivity, and normalization strategies to overcome docking scoring function bias. The different metrics, ranking, normalization strategies and their combinations were first assessed using their mean ranking error (MRE). A version combining all metrics was used to select 36 unique protein-ligand complexes, assessed in MD, with the final retention of 25. From the 16 in vitro tested hits of the 25, fingolimod, abiraterone, prazosin, and terazosin showed antiplasmodial activity with IC50 2.21, 3.37, 16.67 and 34.72 μM respectively and of these, only fingolimod was found to be not safe with respect to human cell viability. These compounds were predicted active on different molecular targets, abiraterone was predicted to interact with a putative liver-stage essential target, hence promising as a transmission-blocking agent. The pipeline had a promising 25% hit rate considering the proteome-scale and use of cost-effective approaches. Secondly, we focused on Plasmodium falciparum 1-deoxy-D-xylulose-5-phosphate reductoisomerase (PfDXR) using a more extensive screening pipeline to overcome some of the current in silico screening limitations. Starting from the ZINC lead-like library of ~3M, hierarchical ligand-based virtual screening (LBVS) and structure-based virtual screening (SBVS) approaches with molecular docking and re-scoring using eleven scoring functions (SFs) were used. Later ranking with an exponential consensus strategy was included. Selected hits were further assessed through Molecular Mechanics Poisson-Boltzmann Surface Area (MM-PBSA), advanced MD sampling in a ligand pulling simulations and (Weighted Histogram Analysis Method) WHAM analysis for umbrella sampling (US) to derive binding free energies. Four leads had better predicted affinities in US than LC5, a 280 nM potent PfDXR inhibitor with ZINC000050633276 showing a promising binding of -20.43 kcal/mol. As shown with fosmidomycin, DXR inhibition offers fast acting compounds fulfilling antimalarials TCP1. Yet, fosmidomycin has a high polarity causing its short half-life and hampering its clinical use. These leads scaffolds are different from fosmidomycin and hence may offer better pharmacokinetic and pharmacodynamic properties and may also be promising for lead optimization. A combined analysis of residues’ contributions to the free energy of binding in MM-PBSA and to steered molecular dynamics (SMD) Fmax indicated GLU233, CYS268, SER270, TRP296, and HIS341 as exploitable for compound optimization. Finally, we updated the SANCDB library with new NPs and their commercially available analogs as a solution to NP availability. The library is extended to 1005 compounds from its initial 600 compounds and the database is integrated to Mcule and Molport APIs for analogs automatic update. The new set may contribute to virtual screening and to antimalarials as the most effective ones have NP origin. , Thesis (PhD) -- Faculty of Science, Biochemistry and Microbiology, 2021
- Full Text:
- Date Issued: 2021-10-29
Prediction of mass spectra for natural products using an ab initio approach
- Authors: Novokoza, Yolanda
- Date: 2020
- Subjects: Molecular dynamics , Molecular dynamics -- Computer simulation , Mass spectroscopy , Electron impact ionization
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/167166 , vital:41443
- Description: Mass spectrometry (MS) is a technique that measures the fragmentation of molecules, dependent on the molecule’s chemical composition and structure, by first introducing a charge on the molecules. The instrument records the mass to charge ratio, but the energy from the ionization process causes the molecule to fragment. The resultant mass spectrum is highly indicative of not only the molecule analyzed, but also its chemical composition. MS is used in research and industry for both routine and research purposes. One such way to ionize molecules for MS is by bombarding the molecule with electrons which is the basis of electron impact mass spectrometry (EIMS). Although EIMS is widely used, prediction of electron impact mass spectra from first principles is a challenging problem due to a need to accurately determine the probability of different fragmentation pathways of a molecule. Ab initio molecular dynamics based methods are able to explore in an automatic fashion the energetically available fragmentation paths thus give reaction mechanisms in an unbiased way. The mass spectra of five molecules have been explored in work-flows leading to the prediction of mass spectra. These molecules include three natural products alpha-hispanolol, PFB oxime derivative and boronolide (for which experimental mass spectra were not available) and two compounds from the NIST database (for which experimental mass spectra were available). For each of these systems many random conformations were generated using the RDKit library. To all conformations random velocities were applied to each atom. Ab initio molecular dynamics was performed on each conformer, using these initial random velocities using CP2K software, at DFTB+ level at a variety of highly raised temperatures (to accelerate the formation of fragments) Fragmentation was monitored by iterating through all bonds, and identifying bond breakages during dynamics. Graph theoretical packages were used then to track distinct fragments generated. For each of these fragments, charges were determined from Mulliken analysis for all atoms on the fragment from the QM calculations and sum of atomic spin densities per fragment was also plotted. The fragment with the greatest charge (corresponding to the formation of a cation fragment) was taken for plotting on the mass spectrum. Finally, from the mass of the fragment and its elemental composition, the isotopic distribution for the fragment was determined, and this distribution was included by addition in to the mass spectrum. For all trajectories, the sum of all isotopic distributions determined the final mass spectrum.
- Full Text:
- Date Issued: 2020
- Authors: Novokoza, Yolanda
- Date: 2020
- Subjects: Molecular dynamics , Molecular dynamics -- Computer simulation , Mass spectroscopy , Electron impact ionization
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/167166 , vital:41443
- Description: Mass spectrometry (MS) is a technique that measures the fragmentation of molecules, dependent on the molecule’s chemical composition and structure, by first introducing a charge on the molecules. The instrument records the mass to charge ratio, but the energy from the ionization process causes the molecule to fragment. The resultant mass spectrum is highly indicative of not only the molecule analyzed, but also its chemical composition. MS is used in research and industry for both routine and research purposes. One such way to ionize molecules for MS is by bombarding the molecule with electrons which is the basis of electron impact mass spectrometry (EIMS). Although EIMS is widely used, prediction of electron impact mass spectra from first principles is a challenging problem due to a need to accurately determine the probability of different fragmentation pathways of a molecule. Ab initio molecular dynamics based methods are able to explore in an automatic fashion the energetically available fragmentation paths thus give reaction mechanisms in an unbiased way. The mass spectra of five molecules have been explored in work-flows leading to the prediction of mass spectra. These molecules include three natural products alpha-hispanolol, PFB oxime derivative and boronolide (for which experimental mass spectra were not available) and two compounds from the NIST database (for which experimental mass spectra were available). For each of these systems many random conformations were generated using the RDKit library. To all conformations random velocities were applied to each atom. Ab initio molecular dynamics was performed on each conformer, using these initial random velocities using CP2K software, at DFTB+ level at a variety of highly raised temperatures (to accelerate the formation of fragments) Fragmentation was monitored by iterating through all bonds, and identifying bond breakages during dynamics. Graph theoretical packages were used then to track distinct fragments generated. For each of these fragments, charges were determined from Mulliken analysis for all atoms on the fragment from the QM calculations and sum of atomic spin densities per fragment was also plotted. The fragment with the greatest charge (corresponding to the formation of a cation fragment) was taken for plotting on the mass spectrum. Finally, from the mass of the fragment and its elemental composition, the isotopic distribution for the fragment was determined, and this distribution was included by addition in to the mass spectrum. For all trajectories, the sum of all isotopic distributions determined the final mass spectrum.
- Full Text:
- Date Issued: 2020
In silico study of Plasmodium 1-deoxy-dxylulose 5-phosphate reductoisomerase (DXR) for identification of novel inhibitors from SANCDB
- Authors: Diallo, Bakary N'tji
- Date: 2018
- Subjects: Plasmodium 1-deoxy-dxylulose 5-phosphate reductoisomerase , Isoprenoids , Plasmodium , Antimalarials , Malaria -- Chemotherapy , Molecules -- Models , Molecular dynamics , South African Natural Compounds Database
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/64012 , vital:28523
- Description: Malaria remains a major health concern with a complex parasite constantly developing resistance to the different drugs introduced to treat it, threatening the efficacy of the current ACT treatment recommended by WHO (World Health Organization). Different antimalarial compounds with different mechanisms of action are ideal as this decreases chances of resistance occurring. Inhibiting DXR and consequently the MEP pathway is a good strategy to find a new antimalarial with a novel mode of action. From literature, all the enzymes of the MEP pathway have also been shown to be indispensable for the synthesis of isoprenoids. They have been validated as drug targets and the X-ray structure of each of the enzymes has been solved. DXR is a protein which catalyses the second step of the MEP pathway. There are currently 255 DXR inhibitors in the Binding Database (accessed November 2017) generally based on the fosmidomycin structural scaffold and thus often showing poor drug likeness properties. This study aims to research new DXR inhibitors using in silico techniques. We analysed the protein sequence and built 3D models in close and open conformations for the different Plasmodium sequences. Then SANCDB compounds were screened to identify new potential DXR inhibitors with new chemical scaffolds. Finally, the identified hits were submitted to molecular dynamics studies, preceded by a parameterization of the manganese atom in the protein active site.
- Full Text:
- Date Issued: 2018
- Authors: Diallo, Bakary N'tji
- Date: 2018
- Subjects: Plasmodium 1-deoxy-dxylulose 5-phosphate reductoisomerase , Isoprenoids , Plasmodium , Antimalarials , Malaria -- Chemotherapy , Molecules -- Models , Molecular dynamics , South African Natural Compounds Database
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/64012 , vital:28523
- Description: Malaria remains a major health concern with a complex parasite constantly developing resistance to the different drugs introduced to treat it, threatening the efficacy of the current ACT treatment recommended by WHO (World Health Organization). Different antimalarial compounds with different mechanisms of action are ideal as this decreases chances of resistance occurring. Inhibiting DXR and consequently the MEP pathway is a good strategy to find a new antimalarial with a novel mode of action. From literature, all the enzymes of the MEP pathway have also been shown to be indispensable for the synthesis of isoprenoids. They have been validated as drug targets and the X-ray structure of each of the enzymes has been solved. DXR is a protein which catalyses the second step of the MEP pathway. There are currently 255 DXR inhibitors in the Binding Database (accessed November 2017) generally based on the fosmidomycin structural scaffold and thus often showing poor drug likeness properties. This study aims to research new DXR inhibitors using in silico techniques. We analysed the protein sequence and built 3D models in close and open conformations for the different Plasmodium sequences. Then SANCDB compounds were screened to identify new potential DXR inhibitors with new chemical scaffolds. Finally, the identified hits were submitted to molecular dynamics studies, preceded by a parameterization of the manganese atom in the protein active site.
- Full Text:
- Date Issued: 2018
The investigation of type-specific features of the copper coordinating AA9 proteins and their effect on the interaction with crystalline cellulose using molecular dynamics studies
- Authors: Moses, Vuyani
- Date: 2018
- Subjects: Copper proteins , Cellulose , Molecular dynamics , Cellulose -- Biodegradation , Bioinformatics
- Language: English
- Type: text , Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/58327 , vital:27230
- Description: AA9 proteins are metallo-enzymes which are crucial for the early stages of cellulose degradation. AA9 proteins have been suggested to cleave glycosidic bonds linking cellulose through the use of their Cu2+ coordinating active site. AA9 proteins possess different regioselectivities depending on the resulting cleavage they form and as result, are grouped accordingly. Type 1 AA9 proteins cleave the C1 carbon of cellulose while Type 2 AA9 proteins cleave the C4 carbon and Type 3 AA9 proteins cleave either C1 or C4 carbons. The steric congestion of the AA9 active site has been proposed to be a contributor to the observed regioselectivity. As such, a bioinformatics characterisation of type-specific sequence and structural features was performed. Initially AA9 protein sequences were obtained from the Pfam database and multiple sequence alignment was performed. The sequences were phylogenetically characterised and sequences were grouped into their respective types and sub-groups were identified. A selection analysis was performed on AA9 LPMO types to determine the selective pressure acting on AA9 protein residues. Motif discovery was then performed to identify conserved sequence motifs in AA9 proteins. Once type-specific sequence features were identified structural mapping was performed to assess possible effects on substrate interaction. Physicochemical property analysis was also performed to assess biochemical differences between AA9 LPMO types. Molecular dynamics (MD) simulations were then employed to dynamically assess the consequences of the discovered type-specific features on AA9-cellulose interaction. Due to the absence of AA9 specific force field parameters MD simulations were not readily applicable. As a result, Potential Energy Surface (PES) scans were performed to evaluate the force field parameters for the AA9 active site using the PM6 semi empirical approach and least squares fitting. A Type 1 AA9 active site was constructed from the crystal structure 4B5Q, encompassing only the Cu2+ coordinating residues, the Cu2+ ion and two water residues. Due to the similarity in AA9 active sites, the Type force field parameters were validated on all three AA9 LPMO types. Two MD simulations for each AA9 LPMO types were conducted using two separate Lennard-Jones parameter sets. Once completed, the MD trajectories were analysed for various features including the RMSD, RMSF, radius of gyration, coordination during simulation, hydrogen bonding, secondary structure conservation and overall protein movement. Force field parameters were successfully evaluated and validated for AA9 proteins. MD simulations of AA9 proteins were able to reveal the presence of unique type-specific binding modes of AA9 active sites to cellulose. These binding modes were characterised by the presence of unique type-specific loops which were present in Type 2 and 3 AA9 proteins but not in Type 1 AA9 proteins. The loops were found to result in steric congestion that affects how the Cu2+ ion interacts with cellulose. As a result, Cu2+ binding to cellulose was observed for Type 1 and not Type 2 and 3 AA9 proteins. In this study force field parameters have been evaluated for the Type 1 active site of AA9 proteins and this parameters were evaluated on all three types and binding. Future work will focus on identifying the nature of the reactive oxygen species and performing QM/MM calculations to elucidate the reactive mechanism of all three AA9 LPMO types.
- Full Text:
- Date Issued: 2018
- Authors: Moses, Vuyani
- Date: 2018
- Subjects: Copper proteins , Cellulose , Molecular dynamics , Cellulose -- Biodegradation , Bioinformatics
- Language: English
- Type: text , Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/58327 , vital:27230
- Description: AA9 proteins are metallo-enzymes which are crucial for the early stages of cellulose degradation. AA9 proteins have been suggested to cleave glycosidic bonds linking cellulose through the use of their Cu2+ coordinating active site. AA9 proteins possess different regioselectivities depending on the resulting cleavage they form and as result, are grouped accordingly. Type 1 AA9 proteins cleave the C1 carbon of cellulose while Type 2 AA9 proteins cleave the C4 carbon and Type 3 AA9 proteins cleave either C1 or C4 carbons. The steric congestion of the AA9 active site has been proposed to be a contributor to the observed regioselectivity. As such, a bioinformatics characterisation of type-specific sequence and structural features was performed. Initially AA9 protein sequences were obtained from the Pfam database and multiple sequence alignment was performed. The sequences were phylogenetically characterised and sequences were grouped into their respective types and sub-groups were identified. A selection analysis was performed on AA9 LPMO types to determine the selective pressure acting on AA9 protein residues. Motif discovery was then performed to identify conserved sequence motifs in AA9 proteins. Once type-specific sequence features were identified structural mapping was performed to assess possible effects on substrate interaction. Physicochemical property analysis was also performed to assess biochemical differences between AA9 LPMO types. Molecular dynamics (MD) simulations were then employed to dynamically assess the consequences of the discovered type-specific features on AA9-cellulose interaction. Due to the absence of AA9 specific force field parameters MD simulations were not readily applicable. As a result, Potential Energy Surface (PES) scans were performed to evaluate the force field parameters for the AA9 active site using the PM6 semi empirical approach and least squares fitting. A Type 1 AA9 active site was constructed from the crystal structure 4B5Q, encompassing only the Cu2+ coordinating residues, the Cu2+ ion and two water residues. Due to the similarity in AA9 active sites, the Type force field parameters were validated on all three AA9 LPMO types. Two MD simulations for each AA9 LPMO types were conducted using two separate Lennard-Jones parameter sets. Once completed, the MD trajectories were analysed for various features including the RMSD, RMSF, radius of gyration, coordination during simulation, hydrogen bonding, secondary structure conservation and overall protein movement. Force field parameters were successfully evaluated and validated for AA9 proteins. MD simulations of AA9 proteins were able to reveal the presence of unique type-specific binding modes of AA9 active sites to cellulose. These binding modes were characterised by the presence of unique type-specific loops which were present in Type 2 and 3 AA9 proteins but not in Type 1 AA9 proteins. The loops were found to result in steric congestion that affects how the Cu2+ ion interacts with cellulose. As a result, Cu2+ binding to cellulose was observed for Type 1 and not Type 2 and 3 AA9 proteins. In this study force field parameters have been evaluated for the Type 1 active site of AA9 proteins and this parameters were evaluated on all three types and binding. Future work will focus on identifying the nature of the reactive oxygen species and performing QM/MM calculations to elucidate the reactive mechanism of all three AA9 LPMO types.
- Full Text:
- Date Issued: 2018
Structural studies on yeast eIF5A using biomolecular NMR and molecular dynamics
- Authors: Sigauke, Lester Takunda
- Date: 2015
- Subjects: Molecular dynamics , Reverse transcriptase , HIV (Viruses) , HIV infections , Eukaryotic cells , Yeast
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4547 , http://hdl.handle.net/10962/d1017927
- Description: Eukaryotic initiation factor 5A, eIF5A, is a ubiquitous eukaryotic protein that has been shown to influence the translation initiation of a specific subset of mRNAs. It is the only protein known to undergo hypusination in a two-step post translational modification process involving deoxyhypusine synthase (DHS) and deoxyhypusine hydroxylase (DOHH) enzymes. Hypusination has been shown to influence translation of HIV-1 and HTLV-1 nuclear export signals, while the involvement of active hypusinated eIF5A in induction of IRES mediated processes that initiate pro-apoptotic process have inspired studies into the manipulation of eIF5A in anti-cancer and anti-diabetic therapies. eIF5A oligomerisation in eukaryotic systems has been shown to be influenced by hypusination and the mechanism of dimerisation is RNA dependent. Nuclear magnetic resonance spectroscopy approaches were proposed to solve the structure of the hypusinated eIF5A in solution in order to understand the influence of hypusination on the monomeric arrangement which enhances dimerisation and activates the protein. Cleavage of the 18 kDa protein monomer by introduction of thrombin cleavage site within the flexible domain was thought to give rise to 10 kDa fragments accessible to a 600 MHz NMR spectrometer. Heteronuclear single quantum correlation experiments of the mutated isotopically labelled protein expressed in E. coli showed that the eIF5A protein with a thrombin cleavage insert, eIF5AThr (eIF5A subscript Thr), was unfolded. In silico investigations of the behaviour of eIF5A and eIF5AThr (eIF5A subscript Thr) models in solution using molecular dynamics showed that the mutated model had different solution dynamics to the native model. Chemical shift predictors were used to extract atomic resolution data of solution dynamics and the introduction of rigidity in the flexible loop region of eIF5A affected solution behaviour consistent with lack of in vivo function of eIF5AThr (eIF5A subscript Thr) in yeast. Residual dipolar coupling and T₁ relaxation times were calculated in anticipation of the extraction of experimental data from RDC and relaxation dispersion experiments based on HSQC measurable restraints.
- Full Text:
- Date Issued: 2015
- Authors: Sigauke, Lester Takunda
- Date: 2015
- Subjects: Molecular dynamics , Reverse transcriptase , HIV (Viruses) , HIV infections , Eukaryotic cells , Yeast
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4547 , http://hdl.handle.net/10962/d1017927
- Description: Eukaryotic initiation factor 5A, eIF5A, is a ubiquitous eukaryotic protein that has been shown to influence the translation initiation of a specific subset of mRNAs. It is the only protein known to undergo hypusination in a two-step post translational modification process involving deoxyhypusine synthase (DHS) and deoxyhypusine hydroxylase (DOHH) enzymes. Hypusination has been shown to influence translation of HIV-1 and HTLV-1 nuclear export signals, while the involvement of active hypusinated eIF5A in induction of IRES mediated processes that initiate pro-apoptotic process have inspired studies into the manipulation of eIF5A in anti-cancer and anti-diabetic therapies. eIF5A oligomerisation in eukaryotic systems has been shown to be influenced by hypusination and the mechanism of dimerisation is RNA dependent. Nuclear magnetic resonance spectroscopy approaches were proposed to solve the structure of the hypusinated eIF5A in solution in order to understand the influence of hypusination on the monomeric arrangement which enhances dimerisation and activates the protein. Cleavage of the 18 kDa protein monomer by introduction of thrombin cleavage site within the flexible domain was thought to give rise to 10 kDa fragments accessible to a 600 MHz NMR spectrometer. Heteronuclear single quantum correlation experiments of the mutated isotopically labelled protein expressed in E. coli showed that the eIF5A protein with a thrombin cleavage insert, eIF5AThr (eIF5A subscript Thr), was unfolded. In silico investigations of the behaviour of eIF5A and eIF5AThr (eIF5A subscript Thr) models in solution using molecular dynamics showed that the mutated model had different solution dynamics to the native model. Chemical shift predictors were used to extract atomic resolution data of solution dynamics and the introduction of rigidity in the flexible loop region of eIF5A affected solution behaviour consistent with lack of in vivo function of eIF5AThr (eIF5A subscript Thr) in yeast. Residual dipolar coupling and T₁ relaxation times were calculated in anticipation of the extraction of experimental data from RDC and relaxation dispersion experiments based on HSQC measurable restraints.
- Full Text:
- Date Issued: 2015
- «
- ‹
- 1
- ›
- »