Target selection from airborne magnetic and radiometric data in Steinhausen area, Namibia
- Authors: Naudé, Corus
- Date: 2013 , 2012-11-09
- Subjects: Geomagnetism -- Maps -- Namibia , Geological surveys -- Namibia , Magnetometers , Aeromagnetic prospecting -- Namibia
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4895 , http://hdl.handle.net/10962/d1001520 , Geomagnetism -- Maps -- Namibia , Geological surveys -- Namibia , Magnetometers , Aeromagnetic prospecting -- Namibia
- Description: The eastern branch of the late Proterozoic Damara Orogenic Belt of central Namibia hosts various copper, gold, manganese and uranium deposits, but in the vicinity of Steinhausen, approximately 145 km northeast of Windhoek, the Damara Belt becomes increasingly covered by recent Kalahari cover sediments resulting in little known geology and subsequent lack of discovered economic mineral deposits. Airborne magnetic and radiometric data over the Steinhausen Study Area was enhanced through image processing and filtering to accentuate characteristics of subsurface geology that, by comparing these characteristics to known geology, aided in the interpretive mapping of lithology, structure and targets for follow-up exploration. As a result, some important observations regarding the regional lithology can be drawn. An arenaceous stratigraphic unit that includes a coarse grained, glassy quartzite below the Kuiseb Formation equates to either the eastern Damaran equivalent of the Nosib Group subjected to high grade metamorphism or, alternatively, the upper part of the pre-Damaran sequence, immediately underlying the Damara. The Kuiseb Formation within the study area is uncharacteristically varied as compared to the same formation further west along the Damaran Orogen and can be subdivided into 5 separate units based on geophysical signature. Structural features evident within the study area include the prominent Kudu and Okahandja Lineaments and straddle an area of inferred uplifted stratigraphy of possibly pre-Damara age. The Ekuja Dome (Kibaran age and host to the Omitiomire copper deposit) is also clearly discernible on the airborne magnetic data and is cross-cut by an east-northeast structural zone. Direct targets for follow-up exploration include the Rodenbeck intrusion, anomalous magnetic bodies and numerous radiometric anomalies present within the study area. Identified dome-like features are considered prospective for Omitiomire-style deposits and the Okatjuru Layered Complex is considered a possible source of copper, chromite, magnetite, ilmenite, nickel and the platinum group elements.
- Full Text:
- Authors: Naudé, Corus
- Date: 2013 , 2012-11-09
- Subjects: Geomagnetism -- Maps -- Namibia , Geological surveys -- Namibia , Magnetometers , Aeromagnetic prospecting -- Namibia
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4895 , http://hdl.handle.net/10962/d1001520 , Geomagnetism -- Maps -- Namibia , Geological surveys -- Namibia , Magnetometers , Aeromagnetic prospecting -- Namibia
- Description: The eastern branch of the late Proterozoic Damara Orogenic Belt of central Namibia hosts various copper, gold, manganese and uranium deposits, but in the vicinity of Steinhausen, approximately 145 km northeast of Windhoek, the Damara Belt becomes increasingly covered by recent Kalahari cover sediments resulting in little known geology and subsequent lack of discovered economic mineral deposits. Airborne magnetic and radiometric data over the Steinhausen Study Area was enhanced through image processing and filtering to accentuate characteristics of subsurface geology that, by comparing these characteristics to known geology, aided in the interpretive mapping of lithology, structure and targets for follow-up exploration. As a result, some important observations regarding the regional lithology can be drawn. An arenaceous stratigraphic unit that includes a coarse grained, glassy quartzite below the Kuiseb Formation equates to either the eastern Damaran equivalent of the Nosib Group subjected to high grade metamorphism or, alternatively, the upper part of the pre-Damaran sequence, immediately underlying the Damara. The Kuiseb Formation within the study area is uncharacteristically varied as compared to the same formation further west along the Damaran Orogen and can be subdivided into 5 separate units based on geophysical signature. Structural features evident within the study area include the prominent Kudu and Okahandja Lineaments and straddle an area of inferred uplifted stratigraphy of possibly pre-Damara age. The Ekuja Dome (Kibaran age and host to the Omitiomire copper deposit) is also clearly discernible on the airborne magnetic data and is cross-cut by an east-northeast structural zone. Direct targets for follow-up exploration include the Rodenbeck intrusion, anomalous magnetic bodies and numerous radiometric anomalies present within the study area. Identified dome-like features are considered prospective for Omitiomire-style deposits and the Okatjuru Layered Complex is considered a possible source of copper, chromite, magnetite, ilmenite, nickel and the platinum group elements.
- Full Text:
Eluvial chromite resources of the Great Dyke of Zimbabwe
- Authors: Musa, Caston Tamburayi
- Date: 2007
- Subjects: Dikes (Geology) -- Zimbabwe Chromite -- Zimbabwe Geology -- Zimbabwe Olivine Serpentinite Eluvium
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5046 , http://hdl.handle.net/10962/d1007731
- Description: Apart from the concentrations of chromite in layers within the Great Dyke and other ultramafic complexes, chromite also occurs as interstitial grains throughout the olivine-bearing rock-types. These olivine-bearing rocks include no rites, gabbros, dunites and pyroxenites. Chromite concentration in these rocks varies from 0.48 to 3.09 per cent of the rock, usually in the form of chromite (Ahrens, 1965; Worst, 1960). A small fraction of this chromite settled to form chromitite layers whilst the remainder is retained within the rock mass as finely disseminated chromite and chromite interstitial to olivine. This retained chromite is much finer grained than layer chromite and is the primary source of eluvial chromite (Cotterill, 1981). During weathering of the serpentine rock and transportation by rainwater, the heavier chromite and magnetite grains are re-deposited along watercourses and vleis or valleys as the speed of the water is retarded sufficiently for the heavier particles to settle. The lighter serpentine material is removed and the chromite concentration in the soil is increased, thus resulting in eluvial chromite (Keech et ai, 1961; Worst, 1960; Prendergast, 1978). The concentration of chromite particles in soil can be up to 15 (or more) Cr₂O₃ %, resulting in economic and exploitable deposits, located primarily along the Great Dyke fiacks. A preliminary evaluation of the eluvials indicate that the Great Dyke could be host to up to 10 million tonnes of potential chromite concentrates which could be processed from such eluvial concentrates. These chromite-rich soils can be mined more cheaply than the traditional seams mining and processed into chromite concentrates through simple mechanical processing techniques of spirals, jigs and heavy media separators. The resultant chromite concentrates are of high quality and can be used to manufacture chromite ore briquettes, which are an alternative to lumpy chromite smelter feed. The main challenges to eluvial mining are the inevitable environmental degradation and coming up with methods that could possibly mitigate against such environmental damage. The distribution of these eluvials over vast plains as thin soil horizons, necessitate use of mobile concentrator plants and hence establishment of extensive infrastructure. These challenges, however, are not insurmountable and test mining and previous production runs have proved profitable. The eluvials are also associated with some lateritic nickel concentrations. The nickel occurs in close association with some oxide such as goethite and garnierite and is associated with iron-manganiferous soil pisolites. The analyses of these pisolites indicate high nickel grades of generally above 1.00 %Ni. Such high nickel-content of Great Dyke laterites warrant, further investigations.
- Full Text:
- Authors: Musa, Caston Tamburayi
- Date: 2007
- Subjects: Dikes (Geology) -- Zimbabwe Chromite -- Zimbabwe Geology -- Zimbabwe Olivine Serpentinite Eluvium
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5046 , http://hdl.handle.net/10962/d1007731
- Description: Apart from the concentrations of chromite in layers within the Great Dyke and other ultramafic complexes, chromite also occurs as interstitial grains throughout the olivine-bearing rock-types. These olivine-bearing rocks include no rites, gabbros, dunites and pyroxenites. Chromite concentration in these rocks varies from 0.48 to 3.09 per cent of the rock, usually in the form of chromite (Ahrens, 1965; Worst, 1960). A small fraction of this chromite settled to form chromitite layers whilst the remainder is retained within the rock mass as finely disseminated chromite and chromite interstitial to olivine. This retained chromite is much finer grained than layer chromite and is the primary source of eluvial chromite (Cotterill, 1981). During weathering of the serpentine rock and transportation by rainwater, the heavier chromite and magnetite grains are re-deposited along watercourses and vleis or valleys as the speed of the water is retarded sufficiently for the heavier particles to settle. The lighter serpentine material is removed and the chromite concentration in the soil is increased, thus resulting in eluvial chromite (Keech et ai, 1961; Worst, 1960; Prendergast, 1978). The concentration of chromite particles in soil can be up to 15 (or more) Cr₂O₃ %, resulting in economic and exploitable deposits, located primarily along the Great Dyke fiacks. A preliminary evaluation of the eluvials indicate that the Great Dyke could be host to up to 10 million tonnes of potential chromite concentrates which could be processed from such eluvial concentrates. These chromite-rich soils can be mined more cheaply than the traditional seams mining and processed into chromite concentrates through simple mechanical processing techniques of spirals, jigs and heavy media separators. The resultant chromite concentrates are of high quality and can be used to manufacture chromite ore briquettes, which are an alternative to lumpy chromite smelter feed. The main challenges to eluvial mining are the inevitable environmental degradation and coming up with methods that could possibly mitigate against such environmental damage. The distribution of these eluvials over vast plains as thin soil horizons, necessitate use of mobile concentrator plants and hence establishment of extensive infrastructure. These challenges, however, are not insurmountable and test mining and previous production runs have proved profitable. The eluvials are also associated with some lateritic nickel concentrations. The nickel occurs in close association with some oxide such as goethite and garnierite and is associated with iron-manganiferous soil pisolites. The analyses of these pisolites indicate high nickel grades of generally above 1.00 %Ni. Such high nickel-content of Great Dyke laterites warrant, further investigations.
- Full Text:
Estimating erosion of cretaceous-aged kimberlites in the Republic of South Africa through the examination of upper-crustal xenoliths
- Authors: Hanson, Emily Kate
- Date: 2007
- Subjects: Kimberlite -- South Africa , Igneous rocks -- Inclusions -- South Africa , Erosion -- South Africa
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4942 , http://hdl.handle.net/10962/d1005554 , Kimberlite -- South Africa , Igneous rocks -- Inclusions -- South Africa , Erosion -- South Africa
- Description: he estimation of post-emplacement kimberlite erosion in South Africa through the study of upper-crustal xenoliths is relatively unexplored; however the presence of these xenoliths has been recognized for well over 100 years. Post-emplacement erosion levels of a small number of South African kimberlite pipes have been inferred through the study of the degree of country-rock diagenesis, the depth of sill formation, the depth of the initiation of the diatreme and fission track studies. Through these studies, several estimates were proposed for the Group I Kimberley kimberlites. Although the 1400 m estimate of erosion remains widely accepted today, this estimate relies on the presence of Karoo-like basalt xenoliths in the Group I Kimberley kimberlites, as their presence proves that basalt existed in the Kimberley area when the kimberlites were emplaced. Basaltic xenoliths were described during the early stages of mining in Kimberley, though only one of these descriptions suggests that the ‘basaltic’ boulders correlate with the Karoo basalts. Because of the discrepancy between these early documentations of upper-crustal xenoliths and because the occurrence of Karoo-like basalt xenoliths in the Group I Kimberley kimberlites is under question, a re-investigation of the erosion levels and the upper crustal xenolith suites in South African, Cretaceous-aged kimberlites, including Melton Wold, Voorspoed, Roberts Victor, West End, Record Stone Quarry, Finsch, Markt, Frank Smith, Pampoenpoort, Uintjiesberg, Koffiefontein / Ebenheuyser, Monastery, Kimberley (Big Hole), Kamfersdam , Jagersfontein, Kaal Vallei, De Beers, Bultfontein, Lushof, Britstown Cluster, Hebron and Lovedale, was conducted. This study presents the analytical results for upper-crustal sandstone and basalt xenoliths collected from dumps, excavation pits and borehole core at the above-mentioned kimberlites, and demonstrates that they correlate with stratigraphic units of the Karoo Supergroup on the basis of mineral and geochemical compositions. These upper-crustal xenoliths are incorporated into kimberlites and down-rafted to levels below their stratigraphic position during kimberlite emplacement, consequently recording the broad stratigraphy into which each kimberlite is emplaced. Therefore, the Cretaceous lateral extent of the Karoo Supergroup is inferred and post-emplacement erosion estimated by reconstructing the stratigraphy based on upper-crustal xenolith suites for each kimberlite and calculating the total thickness of the now-eroded units. The distribution of sandstone xenoliths indicates that during the Cretaceous the lateral extent of the Dwyka, Ecca and Beaufort Groups encompassed all of the examined kimberlites, while the ‘Stormberg’ Group was constrained to an area outlined by the Voorspoed and Monastery kimberlites. Similarly, basalt xenoliths occur in all of the Group II and transitional (143 – 100 Ma) kimberlites but only in the Group I (90 – 74 Ma) kimberlites that lie within close proximity to the western outcrop margin of the outcrop area of the Drakensberg Group basalts (Lesotho Remnant), namely Monastery, Jagersfontein and Kaal Vallei. This trend implies an eastward-retreat of the inland erosion front of the Karoo basalts between 140 and 90 Ma and subsequent erosion of the underlying sedimentary units. It also suggests that a thicker succession of Karoo strata was present at the time of Group II and transitional kimberlite emplacement and that there has been more post-emplacement erosion in these kimberlites than the younger Group I kimberlites, except for Monastery, Jagersfontein and Kaal Vallei. Estimates are unique to each kimberlite as they are dependent on both stratigraphic location, elevation and present country rock, and range from approximately 1000 – 2500 m for the older kimberlites and less than 700 m to 1400 m for the younger kimberlites. Furthermore, the upper-crustal xenoliths found at the Group I Kimberley kimberlites and the coinciding trend of basalt erosion demonstrate that Karoo basalts were eroded from the Kimberley area by the time the Group I Kimberley kimberlites erupted (~85 Ma). Therefore, basalts are omitted from the Group I Kimberley kimberlites post-emplacement erosion estimate, and the upper Beaufort Group is considered the upper limit of the stratigraphy that was present at the time of the eruption of the Group I Kimberley pipes. Therefore, the erosion estimates decrease from a previous estimate of 1400 m down to 400 to 1100 m, where 850 m is considered a dependable intermediate estimate.
- Full Text:
- Authors: Hanson, Emily Kate
- Date: 2007
- Subjects: Kimberlite -- South Africa , Igneous rocks -- Inclusions -- South Africa , Erosion -- South Africa
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4942 , http://hdl.handle.net/10962/d1005554 , Kimberlite -- South Africa , Igneous rocks -- Inclusions -- South Africa , Erosion -- South Africa
- Description: he estimation of post-emplacement kimberlite erosion in South Africa through the study of upper-crustal xenoliths is relatively unexplored; however the presence of these xenoliths has been recognized for well over 100 years. Post-emplacement erosion levels of a small number of South African kimberlite pipes have been inferred through the study of the degree of country-rock diagenesis, the depth of sill formation, the depth of the initiation of the diatreme and fission track studies. Through these studies, several estimates were proposed for the Group I Kimberley kimberlites. Although the 1400 m estimate of erosion remains widely accepted today, this estimate relies on the presence of Karoo-like basalt xenoliths in the Group I Kimberley kimberlites, as their presence proves that basalt existed in the Kimberley area when the kimberlites were emplaced. Basaltic xenoliths were described during the early stages of mining in Kimberley, though only one of these descriptions suggests that the ‘basaltic’ boulders correlate with the Karoo basalts. Because of the discrepancy between these early documentations of upper-crustal xenoliths and because the occurrence of Karoo-like basalt xenoliths in the Group I Kimberley kimberlites is under question, a re-investigation of the erosion levels and the upper crustal xenolith suites in South African, Cretaceous-aged kimberlites, including Melton Wold, Voorspoed, Roberts Victor, West End, Record Stone Quarry, Finsch, Markt, Frank Smith, Pampoenpoort, Uintjiesberg, Koffiefontein / Ebenheuyser, Monastery, Kimberley (Big Hole), Kamfersdam , Jagersfontein, Kaal Vallei, De Beers, Bultfontein, Lushof, Britstown Cluster, Hebron and Lovedale, was conducted. This study presents the analytical results for upper-crustal sandstone and basalt xenoliths collected from dumps, excavation pits and borehole core at the above-mentioned kimberlites, and demonstrates that they correlate with stratigraphic units of the Karoo Supergroup on the basis of mineral and geochemical compositions. These upper-crustal xenoliths are incorporated into kimberlites and down-rafted to levels below their stratigraphic position during kimberlite emplacement, consequently recording the broad stratigraphy into which each kimberlite is emplaced. Therefore, the Cretaceous lateral extent of the Karoo Supergroup is inferred and post-emplacement erosion estimated by reconstructing the stratigraphy based on upper-crustal xenolith suites for each kimberlite and calculating the total thickness of the now-eroded units. The distribution of sandstone xenoliths indicates that during the Cretaceous the lateral extent of the Dwyka, Ecca and Beaufort Groups encompassed all of the examined kimberlites, while the ‘Stormberg’ Group was constrained to an area outlined by the Voorspoed and Monastery kimberlites. Similarly, basalt xenoliths occur in all of the Group II and transitional (143 – 100 Ma) kimberlites but only in the Group I (90 – 74 Ma) kimberlites that lie within close proximity to the western outcrop margin of the outcrop area of the Drakensberg Group basalts (Lesotho Remnant), namely Monastery, Jagersfontein and Kaal Vallei. This trend implies an eastward-retreat of the inland erosion front of the Karoo basalts between 140 and 90 Ma and subsequent erosion of the underlying sedimentary units. It also suggests that a thicker succession of Karoo strata was present at the time of Group II and transitional kimberlite emplacement and that there has been more post-emplacement erosion in these kimberlites than the younger Group I kimberlites, except for Monastery, Jagersfontein and Kaal Vallei. Estimates are unique to each kimberlite as they are dependent on both stratigraphic location, elevation and present country rock, and range from approximately 1000 – 2500 m for the older kimberlites and less than 700 m to 1400 m for the younger kimberlites. Furthermore, the upper-crustal xenoliths found at the Group I Kimberley kimberlites and the coinciding trend of basalt erosion demonstrate that Karoo basalts were eroded from the Kimberley area by the time the Group I Kimberley kimberlites erupted (~85 Ma). Therefore, basalts are omitted from the Group I Kimberley kimberlites post-emplacement erosion estimate, and the upper Beaufort Group is considered the upper limit of the stratigraphy that was present at the time of the eruption of the Group I Kimberley pipes. Therefore, the erosion estimates decrease from a previous estimate of 1400 m down to 400 to 1100 m, where 850 m is considered a dependable intermediate estimate.
- Full Text:
The early proterozoic Makganyene glacial event in South Africa : its implication in sequence stratigraphy interpretations, paleoenvironmental conditions and iron and manganese ore deposition
- Authors: Polteau, Stéphane
- Date: 2005
- Subjects: Geology, Stratigraphic -- South Africa -- Northern Cape Geochemistry -- South Africa -- Northern Cape Paleogeography -- South Africa -- Northern Cape Petrology -- South Africa -- Northern Cape Ore deposits -- South Africa -- Northern Cape
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:5039 , http://hdl.handle.net/10962/d1007612
- Description: The Makganyene Formation forms the base of the Postmasburg Group in the Transvaal Supergroup in the Griqualand West Basin. It consists of diamictites, sandstones, banded iron-formations (BIFs), shales, siltstones and carbonates. It is generally accepted that the Makganyene Formation rests on an erosive regional unconformity throughout the Northern Cape Province. However this study demonstrates that this stratigraphic relationship is not universal, and conformable contacts have been observed. One of the principal aims of this study is to identify the nature of the Makganyene basal contact throughout the Griqualand West Basin. Intensive fieldwork was carried out from Prieska in the south, to Danielskuil in the north. In the Sishen and Hotazel areas, only borehole material was available to assess the stratigraphy. The Griquatown Fault Zone delimits the boundary between the deep basin and platform facies. The Koegas Subgroup is only present south of the Griquatown Fault Zone, where it pinches out. However, the transition Griquatown BIFs-Koegas Subgroup occurs in lacustrine deposits on the Ghaap platform (Beukes, 1983). The Griquatown Fault Zone represents the edge of the basin, which corresponds to a hinge rather than a fault zone. The Makganyene Formation rests with a conformable contact on the Koegas Subgroup south of the Griquatown Hinge Zone, and north of it the Makganyene Formation lies unconformably on the Asbestos Hills Subgroup. The Makganyene Formation displays lateral facies changes that reflect the paleogeography of the Griqualand West Basin, and the development of ice sheets/shelves. The Ghaap platform is characterised by coarse immature sand interbedded with the diamictites. The clasts in this area contain local Asbestos Hills material and no dropstones are present. Such settings are typical of sediments that are being deposited below a grounded ice mass. At the Griquatown Hinge Zone, the sandstone lenses are smaller, and the clasts consist of chert, of which a great number are striated and faceted. In the Matsap area, the presence of dropstones is strong evidence for the presence of a floating ice shelf that released its material by basal melting. Further south, the Makganyene Formation contains stromatolitic bioherms that only form if clastic contamination is minimal and therefore the ice that transported the detritus to the basin did not extend far into open sea conditions. The base of the Hotazel Formation also contains diamictite levels. Dropstones have been identified, implying a glacial origin. The Hotazel diamictites are interbedded with hyaloclastites and BIFs. The Makganyene glacial event, therefore, was not restricted to the Makganyene Formation, but also included the Ongeluk Formation, through to the base of the Hotazel Formation. Petrographic studies of the Makganyene Formation and the base of the Hotazel Formation reveal mineral assemblages that are diagnostic of early to late diagenetic crystallisation and of low-grade metamorphism not exceeding the very low green-schist facies. The facies identified display the same sense of basin deepening, from shallow high-energy Hotazel area on the Ghaap platform, to the deep basin in the Matsap area. Whole-rock geochemical analyses reveal that the elemental composition of the Makganyene Formation is very similar to that of the Asbestos Hills BIFs, which were the most important source of clastic detritus for the Makganyene Formation. However, minor amounts of carbonates of the Campbellrand Subgroup, as well as a felsic crustal input from the Archean granitoid basement, made contributions. On the Ghaap platform, the Makganyene diamictite is enriched in iron, calcium, and magnesium, while in the deeper parts of the basin the diamictites are enriched in detrital elements, such as titanium and aluminium, which occur in the fine clay component. The Hotazel diamictite displays a distinct mafic volcanic input, related to the extrusion of the Ongeluk basaltic andesites, which was incorporated in the glacial sediments. Sequence stratigraphy is based on the recognition of contacts separating the different systems tracts that compose a depositional sequence. However, because the basal contact of the Makganyene Formation has not been properly identified in previous work, no correct model has been proposed so far. Therefore correlations between the Griqualand West and the Transvaal basins, based on lithostratigraphic similarities and extrapolations of unconformities, have to be reviewed, especially since the publication of new radiometric ages contradict all previously proposed correlations. It is proposed here that the Transvaal Supergroup in the Griqualand West Basin represents a continuous depositional event that lasted about 200 Ma. The Makganyene glacial event occurred during changing conditions in the chemistries of the atmosphere and ocean, and in the continental configuration. A Snowball Earth event has been proposed as the causative process of such paleoenvironmental changes. However, evidence presented here of less dramatic glacial conditions, with areas of ice-free waters, implies an alternative to the Snowball Earth event. The paleoenvironmental changes are thought to represent a transition from an anaerobic to aerobic atmosphere, that was responsible for the global cooling of the surface of the Earth, Such a glacial event may have aided in the large-scale precipitation of iron and manganese in areas of intense upwellings.
- Full Text:
- Authors: Polteau, Stéphane
- Date: 2005
- Subjects: Geology, Stratigraphic -- South Africa -- Northern Cape Geochemistry -- South Africa -- Northern Cape Paleogeography -- South Africa -- Northern Cape Petrology -- South Africa -- Northern Cape Ore deposits -- South Africa -- Northern Cape
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:5039 , http://hdl.handle.net/10962/d1007612
- Description: The Makganyene Formation forms the base of the Postmasburg Group in the Transvaal Supergroup in the Griqualand West Basin. It consists of diamictites, sandstones, banded iron-formations (BIFs), shales, siltstones and carbonates. It is generally accepted that the Makganyene Formation rests on an erosive regional unconformity throughout the Northern Cape Province. However this study demonstrates that this stratigraphic relationship is not universal, and conformable contacts have been observed. One of the principal aims of this study is to identify the nature of the Makganyene basal contact throughout the Griqualand West Basin. Intensive fieldwork was carried out from Prieska in the south, to Danielskuil in the north. In the Sishen and Hotazel areas, only borehole material was available to assess the stratigraphy. The Griquatown Fault Zone delimits the boundary between the deep basin and platform facies. The Koegas Subgroup is only present south of the Griquatown Fault Zone, where it pinches out. However, the transition Griquatown BIFs-Koegas Subgroup occurs in lacustrine deposits on the Ghaap platform (Beukes, 1983). The Griquatown Fault Zone represents the edge of the basin, which corresponds to a hinge rather than a fault zone. The Makganyene Formation rests with a conformable contact on the Koegas Subgroup south of the Griquatown Hinge Zone, and north of it the Makganyene Formation lies unconformably on the Asbestos Hills Subgroup. The Makganyene Formation displays lateral facies changes that reflect the paleogeography of the Griqualand West Basin, and the development of ice sheets/shelves. The Ghaap platform is characterised by coarse immature sand interbedded with the diamictites. The clasts in this area contain local Asbestos Hills material and no dropstones are present. Such settings are typical of sediments that are being deposited below a grounded ice mass. At the Griquatown Hinge Zone, the sandstone lenses are smaller, and the clasts consist of chert, of which a great number are striated and faceted. In the Matsap area, the presence of dropstones is strong evidence for the presence of a floating ice shelf that released its material by basal melting. Further south, the Makganyene Formation contains stromatolitic bioherms that only form if clastic contamination is minimal and therefore the ice that transported the detritus to the basin did not extend far into open sea conditions. The base of the Hotazel Formation also contains diamictite levels. Dropstones have been identified, implying a glacial origin. The Hotazel diamictites are interbedded with hyaloclastites and BIFs. The Makganyene glacial event, therefore, was not restricted to the Makganyene Formation, but also included the Ongeluk Formation, through to the base of the Hotazel Formation. Petrographic studies of the Makganyene Formation and the base of the Hotazel Formation reveal mineral assemblages that are diagnostic of early to late diagenetic crystallisation and of low-grade metamorphism not exceeding the very low green-schist facies. The facies identified display the same sense of basin deepening, from shallow high-energy Hotazel area on the Ghaap platform, to the deep basin in the Matsap area. Whole-rock geochemical analyses reveal that the elemental composition of the Makganyene Formation is very similar to that of the Asbestos Hills BIFs, which were the most important source of clastic detritus for the Makganyene Formation. However, minor amounts of carbonates of the Campbellrand Subgroup, as well as a felsic crustal input from the Archean granitoid basement, made contributions. On the Ghaap platform, the Makganyene diamictite is enriched in iron, calcium, and magnesium, while in the deeper parts of the basin the diamictites are enriched in detrital elements, such as titanium and aluminium, which occur in the fine clay component. The Hotazel diamictite displays a distinct mafic volcanic input, related to the extrusion of the Ongeluk basaltic andesites, which was incorporated in the glacial sediments. Sequence stratigraphy is based on the recognition of contacts separating the different systems tracts that compose a depositional sequence. However, because the basal contact of the Makganyene Formation has not been properly identified in previous work, no correct model has been proposed so far. Therefore correlations between the Griqualand West and the Transvaal basins, based on lithostratigraphic similarities and extrapolations of unconformities, have to be reviewed, especially since the publication of new radiometric ages contradict all previously proposed correlations. It is proposed here that the Transvaal Supergroup in the Griqualand West Basin represents a continuous depositional event that lasted about 200 Ma. The Makganyene glacial event occurred during changing conditions in the chemistries of the atmosphere and ocean, and in the continental configuration. A Snowball Earth event has been proposed as the causative process of such paleoenvironmental changes. However, evidence presented here of less dramatic glacial conditions, with areas of ice-free waters, implies an alternative to the Snowball Earth event. The paleoenvironmental changes are thought to represent a transition from an anaerobic to aerobic atmosphere, that was responsible for the global cooling of the surface of the Earth, Such a glacial event may have aided in the large-scale precipitation of iron and manganese in areas of intense upwellings.
- Full Text:
The depositional history and evaluation of two late quaternary, diamondiferous pocket beaches, south-western Namibia
- Authors: Milad, Micael George
- Date: 2004-03
- Subjects: Uncatalogued
- Language: English
- Type: Academic theses , Master's theses , text
- Identifier: http://hdl.handle.net/10962/420934 , vital:71795
- Description: The two Late Quaternary, diamondiferous pocket beach deposits studied here are situated along a 10 km stretch of the storm-dominated, Atlantic coastline of the Sperrgebiet, south-western Namibia. The pocket beaches are approximately 130 km north of the Orange River mouth, which is widely accepted as a long-lived point source for diamonds sourced from the interior of southern Africa. A total of fourteen pocket beach deposits were recently evaluated in this area, but only two of these, namely Site 2 (to the south) and Site 3 (to the north), are considered here. The main diamondbearing horizons are beach gravels, which occur within, and form part of, the pocket beach sequences. The beach gravels are mostly blanketed by sand overburden, meaning that exposures available for study were limited, and much reliance was placed on borehole logging and observations of evaluation sample tailings. The main aims are to unravel the depositional history of the pocket beach sequences, identify the controls on diamond mineralisation in the beach gravels, and critically examine two different methods of estimating average diamond size for the deposits. In pursuit of these aims, sedimentological characteristics of the unconsolidated pocket beach deposits were recorded using small diameter drill holes, hydraulic grab bulk samples, trench exposures and surface outcrops. The surface geology, geomorphology and modern wave patterns were mapped using high-resolution, Airborne Laser Survey imagery coupled with extensive field checking. Three-dimensional geological modeling software was used to gain insight into the subsurface morphology of the deposits. Fossil shell samples were used to aid interpretation of ancient depositional environments and to date parts of the pocket beach sequences. Variations in diamond concentration and the size of diamonds were recorded using bulk samples, some of which were taken from a trench, but most of which were excavated using a hydraulic grab tool called the GB50. Finally, by using diamond size data from Site 3, sample data from diamondiferous beach gravels to the south of the study area and sample campaign simulations, two alternative methods of evaluating average diamond size in marine gravel deposits were appraised.The pocket beach sequences occur within north-south trending valleys of a major deflation basin and are separated from one another by rocky headlands. The ridge-and-valley topography of the deflation basin has resulted from differential erosion of Late Proterozoic basement rock units, alternating layers of which differ greatly in their resistance to the long-lived, local denudationalprocesses. On the basis of the stratigraphic information collected from the unconsolidated pocket beach valley fills, interpreted within the context of global, Late Pleistocene sea level records, the following depositional history is deduced : a) Deposition of sheetflood gravels by ephemeral streams, activated during a regressive phase. b) Transgression, culminating in the deposition of a gravel beach, representing a sea level highstand of +4 metres above mean sea level (mamsl) at between 120 000 and 130 000 BP. c)A regressive phase, resulting in deflation of former valley fills to the bedrock valley floor and accompanied by re-activation of ephemeral stream activity to form sheetflood deposits; this represents a protracted period of subaerial exposure of the +4 m gravel beach deposit. d) Deposition of a great volume of sediment in the valleys during the latter stages of the transgression from the Last Glacial Maximum (LGM). The sequence generated during this phase, which started at ca. 9 000 BP, contains : i) pan/coastal sabkha sediments, ii) shallow, sheltered bay sediments, iii) back-barrier lagoonal sediments, iv) a gravel beach deposit representing a sea level stillstand at -5 mamsl, laid down between 7 600 and 5 600 BP, v) another gravel beach deposit representing the well-known Middle Holocene sea level highstand at +2 to +3 mamsl, laid down at ca. 5 000 BP, and which terminated the transgression from the LGM. e) A minor regression to the current sea level, accompanied by progradation of the shoreline to its current position. This progradational marine unit consists almost entirely of sand and grit, reflecting the lack of gravel supply to this part of the coastline in the most recent past. f) Deposition of modern coastal dunes, which cap the pocket beach sequence and are the youngest sediments in the study area. Using trench and hydraulic grab evaluation sample results, in combination with analysis of wave patterns and field observations, the following local controls on the density distribution (ie. concentration) and size distribution of diamonds in the gravel beach deposits (+4, -5 and +2 to +3 mamsl stands) are recognised: a) Gravel beach depositional processes, which are responsible for clast sorting on the beach, have influenced the density and size distribution of diamonds. The infill zone, or beach toe, favours maximum diamond concentration while diamond size decreases from the imbricate zone (intertidal) to the infill zone (subtidal). b) Wave energy is identified as the dominant local control on diamond size distribution, but has also influenced diamond concentration to a limited degree. Larger diamonds are intimately associated with coarser beach gravels, both of which are a reflection of increased wave energy. Higher concentrations of diamonds are sometimes associated with zones of coarser gravel and therefore greater wave energy. c) The time of deposition of the host gravel beach is seen to be the dominant controlling factor with respect to diamond concentration. This is seen as evidence of significant temporal variation in the availability of diamonds in the littoral evironment. A significant reduction (20%) in average diamond size from Site 2 to Site 3, over a distance of only 6 km, is evident. The following were identified as reasons for this reduction in diamond size : a) Longshore sorting processes, of which the long-lived northerly littoral drift is a key part, are known to have played a role in the diminution of diamond size northwards from the Orange River mouth point source. However, it is believed that this can only partly account for the observed 20% reduction in diamond size. b) Input of sediment and smaller diamonds at Site 3, reworked out of an older, Eocene-aged marine succession in the hinterland, is recognised as a possible additional reason for the large reduction in diamond size from Site 2 to Site 3. It is also speculated that the large size of the pocket beach at Site 3, relative to Site 2, may have resulted in lower average wave energy at Site 3, with consequent reduced average diamond size. Diamond size in the beach gravels of Site 3, as well as in beach gravels elsewhere in the Sperrgebiet, is seen to be lognormally-distributed within geologically homogeneous zones. In theory, lognormal mean estimators represent the best method of estimating average diamond size in such cases, whereas the arithmetic mean estimator has the tendency to overestimate when large outlier values occur. Lognormal mean estimators have the added benefit of providing for the calculation of confidence limits, which are becoming increasingly more important as financial lending institutions insist on better quantification of the risk involved in resource estimates. Sample campaign simulations demonstrate, for the kinds of diamond size-frequency distributions typical of beach gravel deposits at Site 3, that there is no significant improvement in the accuracy of average diamond size estimates when lognormal mean estimators are used instead of the arithmetic mean estimator. This is because the variance (a ) of the diamond populations is low, and large outlier values are extremely unlikely to occur. However, simulation of a diamond population with high variance, drawn from a sample of beach gravels near the Orange River mouth, shows that lognormal estimators produce significantly more accurate results when a is large. Since individual diamond weights were not recorded during evaluation sampling of Site 3, numerical solution of lognormal estimators is not possible, and these would need to be solved using a less accurate graphical method. It is therefore recommended that individual diamond weights are recorded in future sampling campaigns, allowing for the use of lognormal mean estimators, and the calculation of confidence limits for average diamond size estimates. , Thesis (MSc) -- Science, Geology, 2004
- Full Text:
- Authors: Milad, Micael George
- Date: 2004-03
- Subjects: Uncatalogued
- Language: English
- Type: Academic theses , Master's theses , text
- Identifier: http://hdl.handle.net/10962/420934 , vital:71795
- Description: The two Late Quaternary, diamondiferous pocket beach deposits studied here are situated along a 10 km stretch of the storm-dominated, Atlantic coastline of the Sperrgebiet, south-western Namibia. The pocket beaches are approximately 130 km north of the Orange River mouth, which is widely accepted as a long-lived point source for diamonds sourced from the interior of southern Africa. A total of fourteen pocket beach deposits were recently evaluated in this area, but only two of these, namely Site 2 (to the south) and Site 3 (to the north), are considered here. The main diamondbearing horizons are beach gravels, which occur within, and form part of, the pocket beach sequences. The beach gravels are mostly blanketed by sand overburden, meaning that exposures available for study were limited, and much reliance was placed on borehole logging and observations of evaluation sample tailings. The main aims are to unravel the depositional history of the pocket beach sequences, identify the controls on diamond mineralisation in the beach gravels, and critically examine two different methods of estimating average diamond size for the deposits. In pursuit of these aims, sedimentological characteristics of the unconsolidated pocket beach deposits were recorded using small diameter drill holes, hydraulic grab bulk samples, trench exposures and surface outcrops. The surface geology, geomorphology and modern wave patterns were mapped using high-resolution, Airborne Laser Survey imagery coupled with extensive field checking. Three-dimensional geological modeling software was used to gain insight into the subsurface morphology of the deposits. Fossil shell samples were used to aid interpretation of ancient depositional environments and to date parts of the pocket beach sequences. Variations in diamond concentration and the size of diamonds were recorded using bulk samples, some of which were taken from a trench, but most of which were excavated using a hydraulic grab tool called the GB50. Finally, by using diamond size data from Site 3, sample data from diamondiferous beach gravels to the south of the study area and sample campaign simulations, two alternative methods of evaluating average diamond size in marine gravel deposits were appraised.The pocket beach sequences occur within north-south trending valleys of a major deflation basin and are separated from one another by rocky headlands. The ridge-and-valley topography of the deflation basin has resulted from differential erosion of Late Proterozoic basement rock units, alternating layers of which differ greatly in their resistance to the long-lived, local denudationalprocesses. On the basis of the stratigraphic information collected from the unconsolidated pocket beach valley fills, interpreted within the context of global, Late Pleistocene sea level records, the following depositional history is deduced : a) Deposition of sheetflood gravels by ephemeral streams, activated during a regressive phase. b) Transgression, culminating in the deposition of a gravel beach, representing a sea level highstand of +4 metres above mean sea level (mamsl) at between 120 000 and 130 000 BP. c)A regressive phase, resulting in deflation of former valley fills to the bedrock valley floor and accompanied by re-activation of ephemeral stream activity to form sheetflood deposits; this represents a protracted period of subaerial exposure of the +4 m gravel beach deposit. d) Deposition of a great volume of sediment in the valleys during the latter stages of the transgression from the Last Glacial Maximum (LGM). The sequence generated during this phase, which started at ca. 9 000 BP, contains : i) pan/coastal sabkha sediments, ii) shallow, sheltered bay sediments, iii) back-barrier lagoonal sediments, iv) a gravel beach deposit representing a sea level stillstand at -5 mamsl, laid down between 7 600 and 5 600 BP, v) another gravel beach deposit representing the well-known Middle Holocene sea level highstand at +2 to +3 mamsl, laid down at ca. 5 000 BP, and which terminated the transgression from the LGM. e) A minor regression to the current sea level, accompanied by progradation of the shoreline to its current position. This progradational marine unit consists almost entirely of sand and grit, reflecting the lack of gravel supply to this part of the coastline in the most recent past. f) Deposition of modern coastal dunes, which cap the pocket beach sequence and are the youngest sediments in the study area. Using trench and hydraulic grab evaluation sample results, in combination with analysis of wave patterns and field observations, the following local controls on the density distribution (ie. concentration) and size distribution of diamonds in the gravel beach deposits (+4, -5 and +2 to +3 mamsl stands) are recognised: a) Gravel beach depositional processes, which are responsible for clast sorting on the beach, have influenced the density and size distribution of diamonds. The infill zone, or beach toe, favours maximum diamond concentration while diamond size decreases from the imbricate zone (intertidal) to the infill zone (subtidal). b) Wave energy is identified as the dominant local control on diamond size distribution, but has also influenced diamond concentration to a limited degree. Larger diamonds are intimately associated with coarser beach gravels, both of which are a reflection of increased wave energy. Higher concentrations of diamonds are sometimes associated with zones of coarser gravel and therefore greater wave energy. c) The time of deposition of the host gravel beach is seen to be the dominant controlling factor with respect to diamond concentration. This is seen as evidence of significant temporal variation in the availability of diamonds in the littoral evironment. A significant reduction (20%) in average diamond size from Site 2 to Site 3, over a distance of only 6 km, is evident. The following were identified as reasons for this reduction in diamond size : a) Longshore sorting processes, of which the long-lived northerly littoral drift is a key part, are known to have played a role in the diminution of diamond size northwards from the Orange River mouth point source. However, it is believed that this can only partly account for the observed 20% reduction in diamond size. b) Input of sediment and smaller diamonds at Site 3, reworked out of an older, Eocene-aged marine succession in the hinterland, is recognised as a possible additional reason for the large reduction in diamond size from Site 2 to Site 3. It is also speculated that the large size of the pocket beach at Site 3, relative to Site 2, may have resulted in lower average wave energy at Site 3, with consequent reduced average diamond size. Diamond size in the beach gravels of Site 3, as well as in beach gravels elsewhere in the Sperrgebiet, is seen to be lognormally-distributed within geologically homogeneous zones. In theory, lognormal mean estimators represent the best method of estimating average diamond size in such cases, whereas the arithmetic mean estimator has the tendency to overestimate when large outlier values occur. Lognormal mean estimators have the added benefit of providing for the calculation of confidence limits, which are becoming increasingly more important as financial lending institutions insist on better quantification of the risk involved in resource estimates. Sample campaign simulations demonstrate, for the kinds of diamond size-frequency distributions typical of beach gravel deposits at Site 3, that there is no significant improvement in the accuracy of average diamond size estimates when lognormal mean estimators are used instead of the arithmetic mean estimator. This is because the variance (a ) of the diamond populations is low, and large outlier values are extremely unlikely to occur. However, simulation of a diamond population with high variance, drawn from a sample of beach gravels near the Orange River mouth, shows that lognormal estimators produce significantly more accurate results when a is large. Since individual diamond weights were not recorded during evaluation sampling of Site 3, numerical solution of lognormal estimators is not possible, and these would need to be solved using a less accurate graphical method. It is therefore recommended that individual diamond weights are recorded in future sampling campaigns, allowing for the use of lognormal mean estimators, and the calculation of confidence limits for average diamond size estimates. , Thesis (MSc) -- Science, Geology, 2004
- Full Text:
The geology of the Proterozoic Haveri Au-Cu deposit, Southern Finland
- Strauss, Toby Anthony Lavery
- Authors: Strauss, Toby Anthony Lavery
- Date: 2004
- Subjects: Geology, Stratigraphic -- Precambrian , Geology, Stratigraphic -- Proterozoic , Ore deposits -- Finland , Geology -- Finland
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:5081 , http://hdl.handle.net/10962/d1015978
- Description: The Haveri Au-Cu deposit is located in southern Finland about 175 km north of Helsinki. It occurs on the northern edge of the continental island arc-type, volcano-sedimentary Tampere Schist Belt (TSB) within the Palaeoproterozoic Svecofennian Domain (2.0 – 1.75 Ga) of the Fennoscandian Shield. The 1.99 Ga Haveri Formation forms the base of the supracrustal stratigraphy consisting of metavolcanic pillow lavas and breccias passing upwards into intercalated metatuffs and metatuffites. There is a continuous gradation upwards from the predominantly volcaniclastic Haveri Formation into the overlying epiclastic meta-greywackes of the Osara Formation. The Haveri deposit is hosted in this contact zone. This supracrustal sequence has been intruded concordantly by quartz-feldspar porphyries. Approximately 1.89 Ga ago, high crustal heat flow led to the generation and emplacement of voluminous synkinematic, I-type, magnetite-series granitoids of the Central Finland Granitoid Complex (CFGC), resulting in coeval high-T/low-P metamorphism (hornfelsic textures), and D₁ deformation. During the crystallisation and cooling of the granitoids, a magmatic-dominated hydrothermal system caused extensive hydrothermal alteration and Cu-Au mineralisation through the late-D₁ to early-D₂ deformation. Initially, a pre-ore Na-Ca alteration phase caused albitisation of the host rock. This was closely followed by strong Ca-Fe alteration, responsible for widespread amphibolitisation and quartz veining and associated with abundant pyrrhotite, magnetite, chalcopyrite and gold mineralisation. More localised calcic-skarn alteration is also present as zoned garnetpyroxene- epidote skarn assemblages with associated pyrrhotite and minor sphalerite, centred on quartzcalcite± scapolite veinlets. Post-ore alteration includes an evolution to more K-rich alteration (biotitisation). Late D₂-retrograde chlorite began to replace the earlier high-T assemblage. Late emanations (post-D₂ and pre-D₃) from the cooling granitoids, under lower temperatures and oxidising conditions, are represented by carbonate-barite veins and epidote veinlets. Later, narrow dolerite dykes were emplaced followed by a weak D₃ deformation, resulting in shearing and structural reactivation along the carbonate-barite bands. This phase was accompanied by pyrite deposition. Both sulphides and oxides are common at Haveri, with ore types varying from massive sulphide and/or magnetite, to networks of veinlets and disseminations of oxides and/or sulphides. Cataclastites, consisting of deformed, brecciated bands of sulphide, with rounded and angular clasts of quartz vein material and altered host-rock are an economically important ore type. Ore minerals are principally pyrrhotite, magnetite and chalcopyrite with lesser amounts of pyrite, molybdenite and sphalerite. There is a general progression from early magnetite, through pyrrhotite to pyrite indicating increasing sulphidation with time. Gold is typically found as free gold within quartz veins and within intense zones of amphibolitisation. Considerable gold is also found in the cataclastite ore type either as invisible gold within the sulphides and/or as free gold within the breccia fragments. The unaltered amphibolites of the Haveri Formation can be classified as medium-K basalts of the tholeiitic trend. Trace and REE support an interpretation of formation in a back-arc basin setting. The unaltered porphyritic rocks are calc-alkaline dacites, and are interpreted, along with the granitoids as having an arc-type origin. This is consistent with the evolution from an initial back-arc basin, through a period of passive margin and/or fore-arc deposition represented by the Osara Formation greywackes and the basal stratigraphy of the TSB, prior to the onset of arc-related volcanic activity characteristic of the TSB and the Svecofennian proper. Using a combination of petrogenetic grids, mineral compositions (garnet-biotite and hornblendeplagioclase thermometers) and oxygen isotope thermometry, peak metamorphism can be constrained to a maximum of approximately 600 °C and 1.5 kbars pressure. Furthermore, the petrogenetic grids indicate that the REDOX conditions can be constrained at 600°C to log f(O₂) values of approximately - 21.0 to -26.0 and -14.5 to -17.5 for the metasedimentary rocks and mafic metavolcanic rocks respectively, thus indicating the presence of a significant REDOX boundary. Amphibole compositions from the Ca-Fe alteration phase (amphibolitisation) indicate iron enrichment with increasing alteration corresponding to higher temperatures of formation. Oxygen isotope studies combined with limited fluid inclusion studies indicate that the Ca-Fe alteration and associated quartz veins formed at high temperatures (530 – 610°C) from low CO₂, low- to moderately saline (<10 eq. wt% NaCl), magmatic-dominated fluids. Fluid inclusion decrepitation textures in the quartz veins suggest isobaric decompression. This is compatible with formation in high-T/low-P environments such as contact aureoles and island arcs. The calcic-skarn assemblage, combined with phase equilibria and sphalerite geothermometry, are indicative of formation at high temperatures (500 – 600 °C) from fluids with higher CO₂ contents and more saline compositions than those responsible for the Fe-Ca alteration. Limited fluid inclusion studies have identified hypersaline inclusions in secondary inclusion trails within quartz. The presence of calcite and scapolite also support formation from CO₂-rich saline fluids. It is suggested that the calcic-skarn alteration and the amphibolitisation evolved from the same fluids, and that P-T changes led to fluid unmixing resulting in two fluid types responsible for the observed alteration variations. Chlorite geothermometry on retrograde chlorite indicates temperatures of 309 – 368 °C. As chlorite represents the latest hydrothermal event, this can be taken as a lower temperature limit for hydrothermal alteration and mineralisation at Haveri.The gold mineralisation at Haveri is related primarily to the Ca-Fe alteration. Under such P-T-X conditions gold was transported as chloride complexes. Ore was localised by a combination of structural controls (shears and folds) and REDOX reactions along the boundary between the oxidised metavolcanics and the reduced metasediments. In addition, fluid unmixing caused an increase in pH, and thus further augmented the precipitation of Cu and Au. During the late D₂-event, temperatures fell below 400 °C, and fluids may have remobilised Au and Cu as bisulphide complexes into the shearcontrolled cataclastites and massive sulphides. The Haveri deposit has many similarities with ore deposit models that include orogenic lode-gold deposits, certain Au-skarn deposits and Fe-oxide Cu-Au deposits. However, many characteristics of the Haveri deposit, including tectonic setting, host lithologies, alteration types, proximity to I-type granitoids and P-T-X conditions of formation, compare favourably with other Early Proterozoic deposits within the TSB and Fennoscandia, as well as many of the deposits in the Cloncurry district of Australia. Consequently, the Haveri deposit can be seen to represent a high-T, Ca-rich member of the recently recognised Fe-oxide Cu-Au group of deposits.
- Full Text:
- Authors: Strauss, Toby Anthony Lavery
- Date: 2004
- Subjects: Geology, Stratigraphic -- Precambrian , Geology, Stratigraphic -- Proterozoic , Ore deposits -- Finland , Geology -- Finland
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:5081 , http://hdl.handle.net/10962/d1015978
- Description: The Haveri Au-Cu deposit is located in southern Finland about 175 km north of Helsinki. It occurs on the northern edge of the continental island arc-type, volcano-sedimentary Tampere Schist Belt (TSB) within the Palaeoproterozoic Svecofennian Domain (2.0 – 1.75 Ga) of the Fennoscandian Shield. The 1.99 Ga Haveri Formation forms the base of the supracrustal stratigraphy consisting of metavolcanic pillow lavas and breccias passing upwards into intercalated metatuffs and metatuffites. There is a continuous gradation upwards from the predominantly volcaniclastic Haveri Formation into the overlying epiclastic meta-greywackes of the Osara Formation. The Haveri deposit is hosted in this contact zone. This supracrustal sequence has been intruded concordantly by quartz-feldspar porphyries. Approximately 1.89 Ga ago, high crustal heat flow led to the generation and emplacement of voluminous synkinematic, I-type, magnetite-series granitoids of the Central Finland Granitoid Complex (CFGC), resulting in coeval high-T/low-P metamorphism (hornfelsic textures), and D₁ deformation. During the crystallisation and cooling of the granitoids, a magmatic-dominated hydrothermal system caused extensive hydrothermal alteration and Cu-Au mineralisation through the late-D₁ to early-D₂ deformation. Initially, a pre-ore Na-Ca alteration phase caused albitisation of the host rock. This was closely followed by strong Ca-Fe alteration, responsible for widespread amphibolitisation and quartz veining and associated with abundant pyrrhotite, magnetite, chalcopyrite and gold mineralisation. More localised calcic-skarn alteration is also present as zoned garnetpyroxene- epidote skarn assemblages with associated pyrrhotite and minor sphalerite, centred on quartzcalcite± scapolite veinlets. Post-ore alteration includes an evolution to more K-rich alteration (biotitisation). Late D₂-retrograde chlorite began to replace the earlier high-T assemblage. Late emanations (post-D₂ and pre-D₃) from the cooling granitoids, under lower temperatures and oxidising conditions, are represented by carbonate-barite veins and epidote veinlets. Later, narrow dolerite dykes were emplaced followed by a weak D₃ deformation, resulting in shearing and structural reactivation along the carbonate-barite bands. This phase was accompanied by pyrite deposition. Both sulphides and oxides are common at Haveri, with ore types varying from massive sulphide and/or magnetite, to networks of veinlets and disseminations of oxides and/or sulphides. Cataclastites, consisting of deformed, brecciated bands of sulphide, with rounded and angular clasts of quartz vein material and altered host-rock are an economically important ore type. Ore minerals are principally pyrrhotite, magnetite and chalcopyrite with lesser amounts of pyrite, molybdenite and sphalerite. There is a general progression from early magnetite, through pyrrhotite to pyrite indicating increasing sulphidation with time. Gold is typically found as free gold within quartz veins and within intense zones of amphibolitisation. Considerable gold is also found in the cataclastite ore type either as invisible gold within the sulphides and/or as free gold within the breccia fragments. The unaltered amphibolites of the Haveri Formation can be classified as medium-K basalts of the tholeiitic trend. Trace and REE support an interpretation of formation in a back-arc basin setting. The unaltered porphyritic rocks are calc-alkaline dacites, and are interpreted, along with the granitoids as having an arc-type origin. This is consistent with the evolution from an initial back-arc basin, through a period of passive margin and/or fore-arc deposition represented by the Osara Formation greywackes and the basal stratigraphy of the TSB, prior to the onset of arc-related volcanic activity characteristic of the TSB and the Svecofennian proper. Using a combination of petrogenetic grids, mineral compositions (garnet-biotite and hornblendeplagioclase thermometers) and oxygen isotope thermometry, peak metamorphism can be constrained to a maximum of approximately 600 °C and 1.5 kbars pressure. Furthermore, the petrogenetic grids indicate that the REDOX conditions can be constrained at 600°C to log f(O₂) values of approximately - 21.0 to -26.0 and -14.5 to -17.5 for the metasedimentary rocks and mafic metavolcanic rocks respectively, thus indicating the presence of a significant REDOX boundary. Amphibole compositions from the Ca-Fe alteration phase (amphibolitisation) indicate iron enrichment with increasing alteration corresponding to higher temperatures of formation. Oxygen isotope studies combined with limited fluid inclusion studies indicate that the Ca-Fe alteration and associated quartz veins formed at high temperatures (530 – 610°C) from low CO₂, low- to moderately saline (<10 eq. wt% NaCl), magmatic-dominated fluids. Fluid inclusion decrepitation textures in the quartz veins suggest isobaric decompression. This is compatible with formation in high-T/low-P environments such as contact aureoles and island arcs. The calcic-skarn assemblage, combined with phase equilibria and sphalerite geothermometry, are indicative of formation at high temperatures (500 – 600 °C) from fluids with higher CO₂ contents and more saline compositions than those responsible for the Fe-Ca alteration. Limited fluid inclusion studies have identified hypersaline inclusions in secondary inclusion trails within quartz. The presence of calcite and scapolite also support formation from CO₂-rich saline fluids. It is suggested that the calcic-skarn alteration and the amphibolitisation evolved from the same fluids, and that P-T changes led to fluid unmixing resulting in two fluid types responsible for the observed alteration variations. Chlorite geothermometry on retrograde chlorite indicates temperatures of 309 – 368 °C. As chlorite represents the latest hydrothermal event, this can be taken as a lower temperature limit for hydrothermal alteration and mineralisation at Haveri.The gold mineralisation at Haveri is related primarily to the Ca-Fe alteration. Under such P-T-X conditions gold was transported as chloride complexes. Ore was localised by a combination of structural controls (shears and folds) and REDOX reactions along the boundary between the oxidised metavolcanics and the reduced metasediments. In addition, fluid unmixing caused an increase in pH, and thus further augmented the precipitation of Cu and Au. During the late D₂-event, temperatures fell below 400 °C, and fluids may have remobilised Au and Cu as bisulphide complexes into the shearcontrolled cataclastites and massive sulphides. The Haveri deposit has many similarities with ore deposit models that include orogenic lode-gold deposits, certain Au-skarn deposits and Fe-oxide Cu-Au deposits. However, many characteristics of the Haveri deposit, including tectonic setting, host lithologies, alteration types, proximity to I-type granitoids and P-T-X conditions of formation, compare favourably with other Early Proterozoic deposits within the TSB and Fennoscandia, as well as many of the deposits in the Cloncurry district of Australia. Consequently, the Haveri deposit can be seen to represent a high-T, Ca-rich member of the recently recognised Fe-oxide Cu-Au group of deposits.
- Full Text:
An overview of the early-proterozoic, auriferous Black Reef placer in the Transvaal Basin
- Authors: De Bever, Johannes Nicolaas
- Date: 1997
- Subjects: Geology, Economic -- South Africa , Placer deposits -- South Africa , Prospecting -- Research -- South Africa
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4984 , http://hdl.handle.net/10962/d1005596 , Geology, Economic -- South Africa , Placer deposits -- South Africa , Prospecting -- Research -- South Africa
- Full Text:
- Authors: De Bever, Johannes Nicolaas
- Date: 1997
- Subjects: Geology, Economic -- South Africa , Placer deposits -- South Africa , Prospecting -- Research -- South Africa
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4984 , http://hdl.handle.net/10962/d1005596 , Geology, Economic -- South Africa , Placer deposits -- South Africa , Prospecting -- Research -- South Africa
- Full Text:
Exotic deposits derived from porphyry copper systems in Chile
- Authors: Diaz Acevedo, Nelson Simon
- Date: 1996
- Subjects: Porphyry -- Chile , Copper mines and mining -- Chile , Copper ores -- Chile
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5050 , http://hdl.handle.net/10962/d1011149 , Porphyry -- Chile , Copper mines and mining -- Chile , Copper ores -- Chile
- Description: The exotic orebodies related to cal-alkaline porphyry copper deposits. are sub-horizontal lenticular bodies of secondary copper minerals that impregnate Tertiary gravels and bedrock of different ages. They lie immediately downslope of the porphyry copper deposits, that is to say. they are related to the propylitic halo of the main deposits, and are considered to have originated with the deposition of copper minerals from solutions that overflowed during the secondary enrichment process. Supergene alteration took place between the late Oligocene and Miocene, by which time both orehodies (exotic and porphyry copper) were established. The paucity of tile denudation since the Miocene in the Andean segment from 21º to 26º latitude S. due to the dominance of a hyperarid climate explains the remarkable preservation of the shallow porphyry copper systems, supergene enriched blankets and associated deposits. This is reflected in the limonites, where the typical boxworks have been partially or totally destroyed on surface by the superleaching. As a result of the lateral migration of the copper-bearing solutions, the exotic deposits show a zonation. alteration and mineralization whose characteristics depend among other factors. on the reactivity of the bedrocks and the Cu/S ratio of the mother deposit. In these deposits three zones can be recognized: Proximal (0 to 2 km Intermediate (2 to 3) and Distal (3 to 8-14 km) with palaeodrainage control. The associations and mineralogical abundance are related to the climate (rain. temperature). In some deposits two important units are detected and they are the Cu-phosphates and Cu-lixiviable (to sulphuric acid) units. The size of tile Chilean exotic deposits varies between 100 and 3.500.000 tons of copper, with a total known resource of 8 M tons of copper. The large exotic deposits are comparable to the resources of a medium-sized porphyry copper- type deposit. The discovery of the exotic deposits is related to the exploration of porphyry copper deposits, where a mass balance of the leached column must be done. Moreover the lithology and alteration of the propylitic halo. permeability, structures, geophysics and geochemistry should be considered. The diorite model is not compatible with a supergene enrichment process, expressed by the absence of colour anomalies, exotic deposits and in the presence of secondary minerals like jarosite, which is coherent with the pyrite deficiency of the system. The projects are for exploitation of reserves by open pit methods. The projects plan to extract and to crush copper oxide ore which will he pre-treated with concentrated sulphuric acid prior to heap leaching, solvent extraction and electrowinning. The copper output varies between 10,000 and 50,000 ton per year of catilode copper. The total investment varies between 20 and 100 millions dollars. For project calculations, estimation of 65 % - 82 % copper recovery and 37 - 40 kg/ton net acid consumption can be used due to the nature of ore. The leaching time is estimated as 30 to 180 days for heaps of 4,5 to 30 metres high. As a result of this, the plant capacity is determined by an annual equivalent of 10,000 to 25,000 ton Cu per year. Pit planning has heen carried out using diverse software on the basis of 5 x 5 x 5 m and 10 x 10 x 10 m block models, evaluated using a kriging package built into the program, giving an overall waste/ore ratio (induding pre-stripping) of 0: I (in an outcrop) to 3: I. The location of the mine and plant sites are associated with the porphyry copper in production, for this the already installed facilities can be used. So there is no need to build a new mine camp or access. The environmental impact is summarized relating to the characterization of the physical, biological and socio-cuitural effects, using the framework of the Base Line study and the Impact evaluation derived from the construction and project operation phases. The conclusions and recommendations will diminish, mitigate and/or eliminate impact derived from the specific activities.
- Full Text:
- Authors: Diaz Acevedo, Nelson Simon
- Date: 1996
- Subjects: Porphyry -- Chile , Copper mines and mining -- Chile , Copper ores -- Chile
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5050 , http://hdl.handle.net/10962/d1011149 , Porphyry -- Chile , Copper mines and mining -- Chile , Copper ores -- Chile
- Description: The exotic orebodies related to cal-alkaline porphyry copper deposits. are sub-horizontal lenticular bodies of secondary copper minerals that impregnate Tertiary gravels and bedrock of different ages. They lie immediately downslope of the porphyry copper deposits, that is to say. they are related to the propylitic halo of the main deposits, and are considered to have originated with the deposition of copper minerals from solutions that overflowed during the secondary enrichment process. Supergene alteration took place between the late Oligocene and Miocene, by which time both orehodies (exotic and porphyry copper) were established. The paucity of tile denudation since the Miocene in the Andean segment from 21º to 26º latitude S. due to the dominance of a hyperarid climate explains the remarkable preservation of the shallow porphyry copper systems, supergene enriched blankets and associated deposits. This is reflected in the limonites, where the typical boxworks have been partially or totally destroyed on surface by the superleaching. As a result of the lateral migration of the copper-bearing solutions, the exotic deposits show a zonation. alteration and mineralization whose characteristics depend among other factors. on the reactivity of the bedrocks and the Cu/S ratio of the mother deposit. In these deposits three zones can be recognized: Proximal (0 to 2 km Intermediate (2 to 3) and Distal (3 to 8-14 km) with palaeodrainage control. The associations and mineralogical abundance are related to the climate (rain. temperature). In some deposits two important units are detected and they are the Cu-phosphates and Cu-lixiviable (to sulphuric acid) units. The size of tile Chilean exotic deposits varies between 100 and 3.500.000 tons of copper, with a total known resource of 8 M tons of copper. The large exotic deposits are comparable to the resources of a medium-sized porphyry copper- type deposit. The discovery of the exotic deposits is related to the exploration of porphyry copper deposits, where a mass balance of the leached column must be done. Moreover the lithology and alteration of the propylitic halo. permeability, structures, geophysics and geochemistry should be considered. The diorite model is not compatible with a supergene enrichment process, expressed by the absence of colour anomalies, exotic deposits and in the presence of secondary minerals like jarosite, which is coherent with the pyrite deficiency of the system. The projects are for exploitation of reserves by open pit methods. The projects plan to extract and to crush copper oxide ore which will he pre-treated with concentrated sulphuric acid prior to heap leaching, solvent extraction and electrowinning. The copper output varies between 10,000 and 50,000 ton per year of catilode copper. The total investment varies between 20 and 100 millions dollars. For project calculations, estimation of 65 % - 82 % copper recovery and 37 - 40 kg/ton net acid consumption can be used due to the nature of ore. The leaching time is estimated as 30 to 180 days for heaps of 4,5 to 30 metres high. As a result of this, the plant capacity is determined by an annual equivalent of 10,000 to 25,000 ton Cu per year. Pit planning has heen carried out using diverse software on the basis of 5 x 5 x 5 m and 10 x 10 x 10 m block models, evaluated using a kriging package built into the program, giving an overall waste/ore ratio (induding pre-stripping) of 0: I (in an outcrop) to 3: I. The location of the mine and plant sites are associated with the porphyry copper in production, for this the already installed facilities can be used. So there is no need to build a new mine camp or access. The environmental impact is summarized relating to the characterization of the physical, biological and socio-cuitural effects, using the framework of the Base Line study and the Impact evaluation derived from the construction and project operation phases. The conclusions and recommendations will diminish, mitigate and/or eliminate impact derived from the specific activities.
- Full Text:
Gold exploration in tropical and sub-tropical terrains with special emphasis on Central and Western Africa
- Authors: Breedt, Machiel Christoffel
- Date: 1996
- Subjects: Geochemical prospecting -- Tropics , Geochemical prospecting -- Africa , Gold ores -- Geology -- Tropics , Gold ores -- Geology -- Africa
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4966 , http://hdl.handle.net/10962/d1005578 , Geochemical prospecting -- Tropics , Geochemical prospecting -- Africa , Gold ores -- Geology -- Tropics , Gold ores -- Geology -- Africa
- Description: The aim of this dissertation is an attempt to' provide a general guide for future gold exploration in tropical and sub-tropical terrains. The dissertation includes a brief discussion of the various exploration techniques used in regional and local exploration. This provide the necessary background knowledge to discriminate between the constraints and applications and to be able to select the techniques which are more suitable for gold exploration in tropical and sub-tropical terrains. Weathering, gold geochemistry and soil formation, fields often neglected, are emphasized to illustrate the importance of the mobility and dispersion of gold in the weathering of the lateritic soil profile. A sound knowledge and experience in regolith mapping is to the advantage of the explorationist. Case studies with special emphasis on Central- and Western Africa are included to illustrate the effectiveness of some of the gold exploration techniques in tropical and sub-tropical terrains. Gold exploration is a highly complex and demanding science and to be successfull involves the full intergration of all geological, geochemical and geophysical information available. An intergrated exploration method and strategy would enhance the possibility of making viable discoveries in this highly competative environment where our mineral resources become more depleted every day. Where applicable, the reader is refered to various recommended literature sources to provide the necessary background knowledge which form an integral part of gold exploration.
- Full Text:
- Authors: Breedt, Machiel Christoffel
- Date: 1996
- Subjects: Geochemical prospecting -- Tropics , Geochemical prospecting -- Africa , Gold ores -- Geology -- Tropics , Gold ores -- Geology -- Africa
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4966 , http://hdl.handle.net/10962/d1005578 , Geochemical prospecting -- Tropics , Geochemical prospecting -- Africa , Gold ores -- Geology -- Tropics , Gold ores -- Geology -- Africa
- Description: The aim of this dissertation is an attempt to' provide a general guide for future gold exploration in tropical and sub-tropical terrains. The dissertation includes a brief discussion of the various exploration techniques used in regional and local exploration. This provide the necessary background knowledge to discriminate between the constraints and applications and to be able to select the techniques which are more suitable for gold exploration in tropical and sub-tropical terrains. Weathering, gold geochemistry and soil formation, fields often neglected, are emphasized to illustrate the importance of the mobility and dispersion of gold in the weathering of the lateritic soil profile. A sound knowledge and experience in regolith mapping is to the advantage of the explorationist. Case studies with special emphasis on Central- and Western Africa are included to illustrate the effectiveness of some of the gold exploration techniques in tropical and sub-tropical terrains. Gold exploration is a highly complex and demanding science and to be successfull involves the full intergration of all geological, geochemical and geophysical information available. An intergrated exploration method and strategy would enhance the possibility of making viable discoveries in this highly competative environment where our mineral resources become more depleted every day. Where applicable, the reader is refered to various recommended literature sources to provide the necessary background knowledge which form an integral part of gold exploration.
- Full Text:
Petrology and geochemistry of the basal gabbro unit, Uitkomst complex
- Strauss, Toby Anthony Lavery
- Authors: Strauss, Toby Anthony Lavery
- Date: 1996
- Subjects: Petrology -- South Africa -- Mpumalanga -- badplaas , Geochemistry -- South Africa -- Mpumalanga , Gabbro -- South Africa -- Mpumalanga
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4989 , http://hdl.handle.net/10962/d1005601 , Petrology -- South Africa -- Mpumalanga -- badplaas , Geochemistry -- South Africa -- Mpumalanga , Gabbro -- South Africa -- Mpumalanga
- Description: The Cu/(Cu+Ni) ratios associated with the Basal Gabbro also display the vertical reverse fractionation trend, supporting the supercooled margin model. The disseminated sulphides in the lowermost units, are regarded as being the result of sulphur saturation induced by contamination from the dolomitic and quartzitic xenoliths. This is supported by isotope data which indicate the high degree of contamination in the lowermost units of the Complex. The results of this study are used to propose a model for the petrogenesis and metallogenesis of the Uitkomst Complex, whereby the Complex is closely related to the Bushveld Complex. The Basal Gabbro, as supported by its chemistry and style of mineralisation (Cu-rich), represents a supercooled margin to the lowermost units of the Uitkomst Complex, which stoped upwards into the surrounding sediments, assimilating the country rock xenoliths, and precipitating sulphides. Following this was a period in which large quantities of magma moved laterally through the system before the magma flow waned, and closed system crystallisation ensued. As the body cooled, the primarily magmatic water was superceded by the hydrothermal magmatic water released from the xenoliths, and later by geothermally driven circulating meteoric water, producing the extensive alteration. This alteration was accompanied by considerable stress and the development of fractures and shears. Finally the Complex was itself intruded by diabase sills and later dolerite dykes.
- Full Text:
- Authors: Strauss, Toby Anthony Lavery
- Date: 1996
- Subjects: Petrology -- South Africa -- Mpumalanga -- badplaas , Geochemistry -- South Africa -- Mpumalanga , Gabbro -- South Africa -- Mpumalanga
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4989 , http://hdl.handle.net/10962/d1005601 , Petrology -- South Africa -- Mpumalanga -- badplaas , Geochemistry -- South Africa -- Mpumalanga , Gabbro -- South Africa -- Mpumalanga
- Description: The Cu/(Cu+Ni) ratios associated with the Basal Gabbro also display the vertical reverse fractionation trend, supporting the supercooled margin model. The disseminated sulphides in the lowermost units, are regarded as being the result of sulphur saturation induced by contamination from the dolomitic and quartzitic xenoliths. This is supported by isotope data which indicate the high degree of contamination in the lowermost units of the Complex. The results of this study are used to propose a model for the petrogenesis and metallogenesis of the Uitkomst Complex, whereby the Complex is closely related to the Bushveld Complex. The Basal Gabbro, as supported by its chemistry and style of mineralisation (Cu-rich), represents a supercooled margin to the lowermost units of the Uitkomst Complex, which stoped upwards into the surrounding sediments, assimilating the country rock xenoliths, and precipitating sulphides. Following this was a period in which large quantities of magma moved laterally through the system before the magma flow waned, and closed system crystallisation ensued. As the body cooled, the primarily magmatic water was superceded by the hydrothermal magmatic water released from the xenoliths, and later by geothermally driven circulating meteoric water, producing the extensive alteration. This alteration was accompanied by considerable stress and the development of fractures and shears. Finally the Complex was itself intruded by diabase sills and later dolerite dykes.
- Full Text:
The geology, geochemistry and stratigraphic correlations of the farm Rietfontein 70 JS on the south -eastern flank of the Dennilton Dome, Transvaal, South Africa
- Authors: Crous, Stephanus Philippus
- Date: 1996
- Subjects: Stratigraphic correlation -- South Africa -- Transvaal , Geology, Stratigraphic , Geochemistry -- South Africa -- Transvaal , Geology -- South Africa -- Transvaal
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4960 , http://hdl.handle.net/10962/d1005572 , Stratigraphic correlation -- South Africa -- Transvaal , Geology, Stratigraphic , Geochemistry -- South Africa -- Transvaal , Geology -- South Africa -- Transvaal
- Description: The study area is located between Loskop Dam and the town of Groblersdal, on the southeastern flank of the Dennilton dome, and is underlain by lithologies of the Pretoria Group, Bushveld Complex mafics and ultramafics and acid lavas that resort under the Rooiberg felsites. Field work comprised of geological mapping, soil-, hard-rock- and stream sediment geochemistry, various geophysical techniques and diamond drilling. The rocktypes that resembles the Rustenburg Layered Suite on the farm Rietfontein 70JS is subdivided into a Mixed Zone, Critical Zone and Main Zone, on grounds of geochemical and certain geophysical attributes. The Mixed Zone that overlies the Bushveld Complex floor-rocks, is furthermore separated into an i) Lower-, ii) Middle- and, iii) Upper Unit. The Lower Unit of the Mixed Zone consists primarily of magnetite-gabbros, iron-rich pegmatites, harzburgites and feldspathic pyroxenites. The Fe-rich constituents of this stratigraphic horizon generates a pronounced magnetic anomaly within the study area. On the basis of; amongst other parameters, Zr/Rb and Sr/Al₂0₃ ratios, the magnetite-gabbros are postulated to conform to lithotypes in the vicinity of magnetite layers 8 to 14 of Upper Zone Subzone B in a normal Bushveld Complex stratigraphical scenario. Similarly, it is argued that the feldspathic pyroxenites and norites that display elevated chromium values are analogues to normal Critical Zone rocktypes of the Rustenburg Layered Snite. A more elaborate and precise stratigraphic correlation for the Critical zone was, however, not possible. It is advocated that a volume imbalance was created by the hot, ascending mafic magmas of the intruding Bushveld Complex, resulting in the updoming of certain prevailing basement features such as the Dennilton Dome. In addition to this ideology, it is proposed that the Mineral Range Fragment is in fact a large xenolith underlain by mafics, after being detached from the Dennilton Dome during the intrusion event. Evidence generated by this study unequivocally indicate that the potential for viable PGE's, Ni, Cu and Au within a Merensky Reef- type configuration or a Plat Reef-type scenario under a relatively thin veneer of acid Bushveld Complex roof-rocks on the eastern flank of the Dennilton Dome, appears feasible.
- Full Text:
- Authors: Crous, Stephanus Philippus
- Date: 1996
- Subjects: Stratigraphic correlation -- South Africa -- Transvaal , Geology, Stratigraphic , Geochemistry -- South Africa -- Transvaal , Geology -- South Africa -- Transvaal
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4960 , http://hdl.handle.net/10962/d1005572 , Stratigraphic correlation -- South Africa -- Transvaal , Geology, Stratigraphic , Geochemistry -- South Africa -- Transvaal , Geology -- South Africa -- Transvaal
- Description: The study area is located between Loskop Dam and the town of Groblersdal, on the southeastern flank of the Dennilton dome, and is underlain by lithologies of the Pretoria Group, Bushveld Complex mafics and ultramafics and acid lavas that resort under the Rooiberg felsites. Field work comprised of geological mapping, soil-, hard-rock- and stream sediment geochemistry, various geophysical techniques and diamond drilling. The rocktypes that resembles the Rustenburg Layered Suite on the farm Rietfontein 70JS is subdivided into a Mixed Zone, Critical Zone and Main Zone, on grounds of geochemical and certain geophysical attributes. The Mixed Zone that overlies the Bushveld Complex floor-rocks, is furthermore separated into an i) Lower-, ii) Middle- and, iii) Upper Unit. The Lower Unit of the Mixed Zone consists primarily of magnetite-gabbros, iron-rich pegmatites, harzburgites and feldspathic pyroxenites. The Fe-rich constituents of this stratigraphic horizon generates a pronounced magnetic anomaly within the study area. On the basis of; amongst other parameters, Zr/Rb and Sr/Al₂0₃ ratios, the magnetite-gabbros are postulated to conform to lithotypes in the vicinity of magnetite layers 8 to 14 of Upper Zone Subzone B in a normal Bushveld Complex stratigraphical scenario. Similarly, it is argued that the feldspathic pyroxenites and norites that display elevated chromium values are analogues to normal Critical Zone rocktypes of the Rustenburg Layered Snite. A more elaborate and precise stratigraphic correlation for the Critical zone was, however, not possible. It is advocated that a volume imbalance was created by the hot, ascending mafic magmas of the intruding Bushveld Complex, resulting in the updoming of certain prevailing basement features such as the Dennilton Dome. In addition to this ideology, it is proposed that the Mineral Range Fragment is in fact a large xenolith underlain by mafics, after being detached from the Dennilton Dome during the intrusion event. Evidence generated by this study unequivocally indicate that the potential for viable PGE's, Ni, Cu and Au within a Merensky Reef- type configuration or a Plat Reef-type scenario under a relatively thin veneer of acid Bushveld Complex roof-rocks on the eastern flank of the Dennilton Dome, appears feasible.
- Full Text:
Gold-bearing volcanic breccia complexes related to carboniferous-permian magmatism, North Queensland, Australia
- Authors: Mujdrica, Stefan
- Date: 1994
- Subjects: Gold mines and mining -- Australia -- Queensland , Gold ores -- Geology -- Australia -- Queensland
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4965 , http://hdl.handle.net/10962/d1005577 , Gold mines and mining -- Australia -- Queensland , Gold ores -- Geology -- Australia -- Queensland
- Description: Gold-bearing volcanic breccia complexes are the major sources of gold in the Tasman Fold Belt System in north Queensland. The Tasman Fold Belt System represents the site of continental accretion as a series of island-arcs and intra-arc basins with accompanying thick sedimentation, volcanism, plutonism, tectonism and mineralisation. In north Queensland, the fold belt system comprises the Hodgkinson-Broken River Fold Belt, Thomson Fold Belt, New England Fold Belt and the Georgetown Inlier. The most numerous ore deposits are associated with calc-alkaline volcanics and granitoid intrusivesof the transitional tectonic stage of the fold belt system. The formation and subsequent gold mineralisation of volcanic breccia complexes are related to Permo-Carboniferous magmatism within the Thomson Fold Belt and Georgetown Inlier. The two most important producing areas are at Mount Leyshon and Kidston mines, which are high tonnage, low-grade gold deposits. The Mount Leyshon breccia complex was emplaced along the contact between CambroOrdovician metasedimentary and metavolcanic rocks, and Ordovician-Devonian I-type granitoids of the Lolworth-Ravenswood Block. The Kidston breccia complex is located on a major lithological contact between the Early to Middle Proterozoic . Einasleigh Metamorphics and the Silurian-Devonian Oak River Granodiorite. The principal hosts to the gold mineralisation at the Mount Leyshon and Kidston deposits, are breccia pipes associated with several episodes of porphyry intrusives. The goldbearing magmatic-hydrothermal and phreatomagmatic breccias post-date the development of a porphyry-type protore. The magmatic-hydrothermal breccias were initially emplaced without the involvement of meteoric-hydrothermal fluids, within a closed system. Later magma impulses reached higher levels in the cooled upper magma chamber, where meteoric water invaded the fracture system. This produced an explosive emplacement of phreatomagmatic breccias, as seen at Mount Leyshon. Widespread sericitisation and pyrite mineralisation are common, with cavity fill, disseminated and fracturelveincontrolled gold and base metal sulphides. The Kidston and Mount Leyshon breccia complexes have hydrothermal alteration and mineralisation characteristics of the 'Lowell-Guilbert Model'. However, the argillic zone is generally not well defined. The gold travelled as chloride complexes with the hydrothermal fluids before being deposited into cavities and fractures of the breccias. Later stage epithermal deposits formed at the top of the breccia complexes that were dominantly quartz-adularia-sericite-type. The erosion, collapse and further intrusion of later porphyry phases allowed the upper parts of the breccia complexes to mix with the lower hydrothermal systems. Exploration for gold-related volcanic breccia complexes is directed at identifying hydrothermal alteration. This is followed by detailed ground studies including geological, mineralogical, petrological and geochemical work, with the idea of constructing a 'model' that can be tested with subsequent subsurface work (e.g. drilling). Geomorphology, remote sensing, geochemistry, geophysics, petrology, isotopes and fluid inclusions are recommended exploration techniques for the search of gold-bearing volcanic breccia complexes. Spectral remote sensing has especially become an important tool for the detection of hydrothermal alteration. Clay and iron minerals of the altered rock, within the breccia complexes, have distinctive spectral characteristics that can be recognisable in multispectral images from the Landsat thematic mapper. The best combination of bands, when using TM remote sensing for hydrothermally altered rock, are 3/5/7 or 4/5/7. The breccia complexes have exploration signatures represented as topographic highs, emplaced within major structural weaknesses, associated I-type granitic batholiths, early potassic alteration with overprint of sericitic alteration, and an associated radiometric high and magnetic low. The exploration for gold-bearing volcanic breccia complex deposits cannot be disregarded, because of the numerous occurrences that are now the major gold producers in north Queensland.
- Full Text:
- Authors: Mujdrica, Stefan
- Date: 1994
- Subjects: Gold mines and mining -- Australia -- Queensland , Gold ores -- Geology -- Australia -- Queensland
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4965 , http://hdl.handle.net/10962/d1005577 , Gold mines and mining -- Australia -- Queensland , Gold ores -- Geology -- Australia -- Queensland
- Description: Gold-bearing volcanic breccia complexes are the major sources of gold in the Tasman Fold Belt System in north Queensland. The Tasman Fold Belt System represents the site of continental accretion as a series of island-arcs and intra-arc basins with accompanying thick sedimentation, volcanism, plutonism, tectonism and mineralisation. In north Queensland, the fold belt system comprises the Hodgkinson-Broken River Fold Belt, Thomson Fold Belt, New England Fold Belt and the Georgetown Inlier. The most numerous ore deposits are associated with calc-alkaline volcanics and granitoid intrusivesof the transitional tectonic stage of the fold belt system. The formation and subsequent gold mineralisation of volcanic breccia complexes are related to Permo-Carboniferous magmatism within the Thomson Fold Belt and Georgetown Inlier. The two most important producing areas are at Mount Leyshon and Kidston mines, which are high tonnage, low-grade gold deposits. The Mount Leyshon breccia complex was emplaced along the contact between CambroOrdovician metasedimentary and metavolcanic rocks, and Ordovician-Devonian I-type granitoids of the Lolworth-Ravenswood Block. The Kidston breccia complex is located on a major lithological contact between the Early to Middle Proterozoic . Einasleigh Metamorphics and the Silurian-Devonian Oak River Granodiorite. The principal hosts to the gold mineralisation at the Mount Leyshon and Kidston deposits, are breccia pipes associated with several episodes of porphyry intrusives. The goldbearing magmatic-hydrothermal and phreatomagmatic breccias post-date the development of a porphyry-type protore. The magmatic-hydrothermal breccias were initially emplaced without the involvement of meteoric-hydrothermal fluids, within a closed system. Later magma impulses reached higher levels in the cooled upper magma chamber, where meteoric water invaded the fracture system. This produced an explosive emplacement of phreatomagmatic breccias, as seen at Mount Leyshon. Widespread sericitisation and pyrite mineralisation are common, with cavity fill, disseminated and fracturelveincontrolled gold and base metal sulphides. The Kidston and Mount Leyshon breccia complexes have hydrothermal alteration and mineralisation characteristics of the 'Lowell-Guilbert Model'. However, the argillic zone is generally not well defined. The gold travelled as chloride complexes with the hydrothermal fluids before being deposited into cavities and fractures of the breccias. Later stage epithermal deposits formed at the top of the breccia complexes that were dominantly quartz-adularia-sericite-type. The erosion, collapse and further intrusion of later porphyry phases allowed the upper parts of the breccia complexes to mix with the lower hydrothermal systems. Exploration for gold-related volcanic breccia complexes is directed at identifying hydrothermal alteration. This is followed by detailed ground studies including geological, mineralogical, petrological and geochemical work, with the idea of constructing a 'model' that can be tested with subsequent subsurface work (e.g. drilling). Geomorphology, remote sensing, geochemistry, geophysics, petrology, isotopes and fluid inclusions are recommended exploration techniques for the search of gold-bearing volcanic breccia complexes. Spectral remote sensing has especially become an important tool for the detection of hydrothermal alteration. Clay and iron minerals of the altered rock, within the breccia complexes, have distinctive spectral characteristics that can be recognisable in multispectral images from the Landsat thematic mapper. The best combination of bands, when using TM remote sensing for hydrothermally altered rock, are 3/5/7 or 4/5/7. The breccia complexes have exploration signatures represented as topographic highs, emplaced within major structural weaknesses, associated I-type granitic batholiths, early potassic alteration with overprint of sericitic alteration, and an associated radiometric high and magnetic low. The exploration for gold-bearing volcanic breccia complex deposits cannot be disregarded, because of the numerous occurrences that are now the major gold producers in north Queensland.
- Full Text:
Surficial placer gold deposits
- Authors: Mann, P L
- Date: 1994
- Subjects: Gold mines and mining , Gold ores -- Geology , Placer deposits
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5088 , http://hdl.handle.net/10962/d1018245
- Description: This review summarises the factors which control the formation and distribution of surficial gold placer deposits. Regional tectonic and climatic conditions as well as gold source are considered. The characteristics of eluvial, alluvial, marine, glacial and fluvioglacial gold placer deposits are described. Particular attention is paid to the gold grains within these placers. These gold grains have a distinctive morphology and chemical composition which reflect the manner in which they were transported, deposited and concentrated within the placers. The knowledge of the processes which lead to the formation and location of surficial gold placers is then used to guide exploration and target potential deposits, which can then be evaluated.
- Full Text:
- Authors: Mann, P L
- Date: 1994
- Subjects: Gold mines and mining , Gold ores -- Geology , Placer deposits
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5088 , http://hdl.handle.net/10962/d1018245
- Description: This review summarises the factors which control the formation and distribution of surficial gold placer deposits. Regional tectonic and climatic conditions as well as gold source are considered. The characteristics of eluvial, alluvial, marine, glacial and fluvioglacial gold placer deposits are described. Particular attention is paid to the gold grains within these placers. These gold grains have a distinctive morphology and chemical composition which reflect the manner in which they were transported, deposited and concentrated within the placers. The knowledge of the processes which lead to the formation and location of surficial gold placers is then used to guide exploration and target potential deposits, which can then be evaluated.
- Full Text:
The porphyry copper system and the precious metal-gold potential
- Authors: Gendall, Ian Richard
- Date: 1994
- Subjects: Copper ores , Porphyry , Gold ores -- Geology , Prospecting
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4992 , http://hdl.handle.net/10962/d1005604 , Copper ores , Porphyry , Gold ores -- Geology , Prospecting
- Description: It has been established that porphyry copper/copper-gold deposits have formed from I Ma to 2 Ga ago. Generally, they are related to the Mesozoic-Cenozoic interval with few reported occurrences from the Palaeozoic or Precambrian. A reason cited is the erosion of these deposits which are often related to convergent plate margins and orogenic belts. Observations of the alteration and mineralisation within and around porphyry copper/copper-gold systems have been included in numerous idealised models. These alteration and mineralisation patterns are dependent on the phases of intrusion, the tectonic setting and rock type, depth of emplacement and relationship to coeval volcanics, physiochemical conditions operative within and surrounding the intrusive and many other mechanical and geochemical conditions. Island arc and cratonic arc/margin deposits are generally considered to be richer in gold than their molybdenum-rich, intra-cratonic counterparts. Metal zonation may occur around these copper/copper-gold deposits, e.g. copper in the core moving out to silver, lead, zinc and gold. This zonation is not always present and gold may occur in the core, intermediate or distal zones. Examples of gold-rich porphyry deposits from British Columbia, Chile and the SW Pacific Island regions suggest gold is closely associated with the potassic-rich zones. Generally these gold-rich zones have greater than 2% magnetite and a high oxygen fugacity is considered to be an important control for gold deposition. High Cl contents within the magma are necessary for gold mobility within the host intrusive centres. Beyond this zone HS₂ becomes an important transporting ligand. Exploration for porphyry copper-gold deposits includes an integrated geological, geophysical and geochemical approach. Petrographic work through to Landsat imagery may be used to determine the chemical conditions of the system, ore association, favourable structural zones and alteration patterns, in order to focus exploration activities.
- Full Text:
- Authors: Gendall, Ian Richard
- Date: 1994
- Subjects: Copper ores , Porphyry , Gold ores -- Geology , Prospecting
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4992 , http://hdl.handle.net/10962/d1005604 , Copper ores , Porphyry , Gold ores -- Geology , Prospecting
- Description: It has been established that porphyry copper/copper-gold deposits have formed from I Ma to 2 Ga ago. Generally, they are related to the Mesozoic-Cenozoic interval with few reported occurrences from the Palaeozoic or Precambrian. A reason cited is the erosion of these deposits which are often related to convergent plate margins and orogenic belts. Observations of the alteration and mineralisation within and around porphyry copper/copper-gold systems have been included in numerous idealised models. These alteration and mineralisation patterns are dependent on the phases of intrusion, the tectonic setting and rock type, depth of emplacement and relationship to coeval volcanics, physiochemical conditions operative within and surrounding the intrusive and many other mechanical and geochemical conditions. Island arc and cratonic arc/margin deposits are generally considered to be richer in gold than their molybdenum-rich, intra-cratonic counterparts. Metal zonation may occur around these copper/copper-gold deposits, e.g. copper in the core moving out to silver, lead, zinc and gold. This zonation is not always present and gold may occur in the core, intermediate or distal zones. Examples of gold-rich porphyry deposits from British Columbia, Chile and the SW Pacific Island regions suggest gold is closely associated with the potassic-rich zones. Generally these gold-rich zones have greater than 2% magnetite and a high oxygen fugacity is considered to be an important control for gold deposition. High Cl contents within the magma are necessary for gold mobility within the host intrusive centres. Beyond this zone HS₂ becomes an important transporting ligand. Exploration for porphyry copper-gold deposits includes an integrated geological, geophysical and geochemical approach. Petrographic work through to Landsat imagery may be used to determine the chemical conditions of the system, ore association, favourable structural zones and alteration patterns, in order to focus exploration activities.
- Full Text:
- «
- ‹
- 1
- ›
- »